IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p186-d206451.html
   My bibliography  Save this article

The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition

Author

Listed:
  • Shuman Meng

    (Department of Applied Mathematics, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yujun Cui

    (State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

In this article, by using the monotone iterative technique coupled with the method of upper and lower solution, we obtain the existence of extremal iteration solutions to conformable fractional differential equations involving Riemann-Stieltjes integral boundary conditions. At the same time, the comparison principle of solving such problems is investigated. Finally, an example is given to illustrate our main results. It should be noted that the conformal fractional derivative is essentially a modified version of the first-order derivative. Our results show that such known results can be translated and stated in the setting of the so-called conformal fractional derivative.

Suggested Citation

  • Shuman Meng & Yujun Cui, 2019. "The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition," Mathematics, MDPI, vol. 7(2), pages 1-9, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:186-:d:206451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yujun Cui & Yumei Zou, 2014. "Existence Results and the Monotone Iterative Technique for Nonlinear Fractional Differential Systems with Coupled Four-Point Boundary Value Problems," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, July.
    2. Kosmatov, Nickolai & Jiang, Weihua, 2016. "Resonant functional problems of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 573-579.
    3. Lu, Changna & Fu, Chen & Yang, Hongwei, 2018. "Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gauhar Rahman & Kottakkaran Sooppy Nisar & Thabet Abdeljawad & Samee Ullah, 2020. "Certain Fractional Proportional Integral Inequalities via Convex Functions," Mathematics, MDPI, vol. 8(2), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezapour, Sh. & Kumar, S. & Iqbal, M.Q. & Hussain, A. & Etemad, S., 2022. "On two abstract Caputo multi-term sequential fractional boundary value problems under the integral conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 365-382.
    2. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    3. Min Guo & Chen Fu & Yong Zhang & Jianxin Liu & Hongwei Yang, 2018. "Study of Ion-Acoustic Solitary Waves in a Magnetized Plasma Using the Three-Dimensional Time-Space Fractional Schamel-KdV Equation," Complexity, Hindawi, vol. 2018, pages 1-17, June.
    4. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    5. Yin, Xiao-Jun & Yang, Lian-Gui & Liu, Quan-Sheng & Su, Jin-Mei & Wu, Guo-rong, 2018. "Structure of equatorial envelope Rossby solitary waves with complete Coriolis force and the external source," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 68-74.
    6. Rizvi, Syed Tahir Raza & Khan, Salah Ud-Din & Hassan, Mohsan & Fatima, Ishrat & Khan, Shahab Ud-Din, 2021. "Stable propagation of optical solitons for nonlinear Schrödinger equation with dispersion and self phase modulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 126-136.
    7. Lei Fu & Yaodeng Chen & Hongwei Yang, 2019. "Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids," Mathematics, MDPI, vol. 7(1), pages 1-13, January.
    8. Haoyu Dong & Changna Lu & Hongwei Yang, 2018. "The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations," Mathematics, MDPI, vol. 6(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:186-:d:206451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.