IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p157-d204504.html
   My bibliography  Save this article

Analysis of General Humoral Immunity HIV Dynamics Model with HAART and Distributed Delays

Author

Listed:
  • A. M. Elaiw

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
    Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt)

  • E. Kh. Elnahary

    (Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt)

Abstract

This paper deals with the study of an HIV dynamics model with two target cells, macrophages and CD4 + T cells and three categories of infected cells, short-lived, long-lived and latent in order to get better insights into HIV infection within the body. The model incorporates therapeutic modalities such as reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs). The model is incorporated with distributed time delays to characterize the time between an HIV contact of an uninfected target cell and the creation of mature HIV. The effect of antibody on HIV infection is analyzed. The production and removal rates of the ten compartments of the model are given by general nonlinear functions which satisfy reasonable conditions. Nonnegativity and ultimately boundedness of the solutions are proven. Using the Lyapunov method, the global stability of the equilibria of the model is proven. Numerical simulations of the system are provided to confirm the theoretical results. We have shown that the antibodies can play a significant role in controlling the HIV infection, but it cannot clear the HIV particles from the plasma. Moreover, we have demonstrated that the intracellular time delay plays a similar role as the Highly Active Antiretroviral Therapies (HAAT) drugs in eliminating the HIV particles.

Suggested Citation

  • A. M. Elaiw & E. Kh. Elnahary, 2019. "Analysis of General Humoral Immunity HIV Dynamics Model with HAART and Distributed Delays," Mathematics, MDPI, vol. 7(2), pages 1-35, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:157-:d:204504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. M. Elaiw, 2012. "Global Dynamics of an HIV Infection Model with Two Classes of Target Cells and Distributed Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-13, August.
    2. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    2. Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    3. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    4. Ahmed Elaiw & Afnan Al Agha, 2020. "Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response," Mathematics, MDPI, vol. 8(4), pages 1-32, April.
    5. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    2. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    4. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    5. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    6. Ahmed M. Elaiw & Taofeek O. Alade & Saud M. Alsulami, 2018. "Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells," Mathematics, MDPI, vol. 6(7), pages 1-19, July.
    7. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    8. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    9. Derksen, Laura & Muula, Adamson & van Oosterhout, Joep, 2022. "Love in the time of HIV: How beliefs about externalities impact health behavior," Journal of Development Economics, Elsevier, vol. 159(C).
    10. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Jessica M Conway & Daniel Coombs, 2011. "A Stochastic Model of Latently Infected Cell Reactivation and Viral Blip Generation in Treated HIV Patients," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-15, April.
    12. James B Gilmore & Anthony D Kelleher & David A Cooper & John M Murray, 2013. "Explaining the Determinants of First Phase HIV Decay Dynamics through the Effects of Stage-dependent Drug Action," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    13. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    14. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    15. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    17. Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.
    18. Huang, Yangxin, 2008. "Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3765-3778, March.
    19. Ahmed M. Elaiw & Noura H. AlShamrani, 2020. "HTLV/HIV Dual Infection: Modeling and Analysis," Mathematics, MDPI, vol. 9(1), pages 1-32, December.
    20. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:157-:d:204504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.