Author
Abstract
Chaos is now recognized as one of three emergent topics of study in the 21c. It is seen as appropriate to examine this in art practice. Accordingly, this paper is written from an art perspective. It does not mimic a traditional mathematical or science format, presenting hypothesis, repeat testing, and a conclusion. The art process operates differently, and chaos is seen in graphic terms, veers more to philosophy, and is obviously subjective. The intent in researching secondary patterns, near the edge of chaos, is to make expressive graphic art images as art works, testing how close they might come to a chaotic state whilst retaining visual coherence. This underpins the author’s current research, but it is recognised as being a very narrow and specialized subset of analogue art activity. The way in which analogue generative art differs from the more common use of digital computers is addressed. Unlike the latter, the work involves designing and making the machines, making the programmers, and writing the algorithms; this is implicit in the text. A brief look at drawing machine history is presented, demonstrating how the author’s machines differ from others. A contextual cross refence is also made, where appropriate, to artists using digital means. The author’s research has documented practitioners who choose an analogue route to make art. However, hardly any of them create programmes to generate coherent images. This shortage creates problems when attempting to cite similar work. Whilst the general principle underlying the work presented is algorithmic, a significant element of quasi-random input is incorporated, consistent with a study of chaos. Emergent facets are implicit, such as the art process, design problem solving, the relationship between quasi-random and determinism, the psychology of evaluation, and the philosophy of how art works. From the author’s Programmable Analogue Drawing Machines, two are selected for this paper which draw Lissajous figures, use X:Y axes, turntables, Direct Current motors, and an asynchronous pen-lift mechanism. Simple instructions generate complex patterns in a similar vein to Alan Turings topics of phyllotaxis and morphogenesis. These aspects will be discussed, presenting two machines that demonstrate these properties.
Suggested Citation
Jack Tait, 2019.
"Secondary, Near Chaotic Patterns from Analogue Drawing Machines,"
Mathematics, MDPI, vol. 7(1), pages 1-15, January.
Handle:
RePEc:gam:jmathe:v:7:y:2019:i:1:p:86-:d:197953
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:1:p:86-:d:197953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.