IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1060-d283903.html
   My bibliography  Save this article

Compressible Navier-Stokes Equations in Cylindrical Passages and General Dynamics of Surfaces—(I)-Flow Structures and (II)-Analyzing Biomembranes under Static and Dynamic Conditions

Author

Listed:
  • Terry E. Moschandreou

    (Department of Applied Mathematics, Faculty of Science, Western University, London, ON N6A 5C1, Canada
    These authors contributed equally to this work.)

  • Keith C. Afas

    (Department of Medical Biophysics, Faculty of Medical Science, Western University, London, ON N6A 5C1, Canada
    These authors contributed equally to this work.)

Abstract

A new approach to solve the compressible Navier-Stokes equations in cylindrical co-ordinates using Geometric Algebra is proposed. This work was recently initiated by corresponding author of this current work, and in contrast due to a now complete geometrical analysis, particularly, two dimensionless parameters are now introduced whose correct definition depends on the scaling invariance of the N-S equations and the one parameter δ defines an equation in density which can be solved for in the tube, and a geometric Variational Calculus approach showing that the total energy of an existing wave vortex in the tube is made up of kinetic energy by vortex movement and internal energy produced by the friction against the wall of the tube. Density of a flowing gas or vapour varies along the length of the tube due to frictional losses along the tube implying that there is a pressure loss and a corresponding density decrease. After reducing the N-S equations to a single PDE, it is here proven that a Hunter-Saxton wave vortex exists along the wall of the tube due to a vorticity argument. The reduced problem shows finite-time blowup as the two parameters δ and α approach zero. A rearranged form for density is valid for δ approaching infinity for the case of incompressible flow proving positive for the existence of smooth solutions to the cylindrical Navier-Stokes equations. Finally we propose a CMS (Calculus of Moving Surfaces)–invariant variational calculus to analyze general dynamic surfaces of Riemannian 2-Manifolds in R 3 . Establishing fluid structures in general compressible flows and analyzing membranes in such flows for example flows with dynamic membranes immersed in fluid (vapour or gas) with vorticity as, for example, in the lungs there can prove to be a strong connection between fluid and solid mechanics.

Suggested Citation

  • Terry E. Moschandreou & Keith C. Afas, 2019. "Compressible Navier-Stokes Equations in Cylindrical Passages and General Dynamics of Surfaces—(I)-Flow Structures and (II)-Analyzing Biomembranes under Static and Dynamic Conditions," Mathematics, MDPI, vol. 7(11), pages 1-35, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1060-:d:283903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1060/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1060-:d:283903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.