IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p964-d276034.html
   My bibliography  Save this article

A Multiscale RBF Collocation Method for the Numerical Solution of Partial Differential Equations

Author

Listed:
  • Zhiyong Liu

    (School of Mathematical Sciences, Fudan University, Shanghai 200433, China
    school of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)

  • Qiuyan Xu

    (school of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)

Abstract

In this paper, we derive and discuss the hierarchical radial basis functions method for the approximation to Sobolev functions and the collocation to well-posed linear partial differential equations. Similar to multilevel splitting of finite element spaces, the hierarchical radial basis functions are constructed by employing successive refinement scattered data sets and scaled compactly supported radial basis functions with varying support radii. Compared with the compactly supported radial basis functions approximation and stationary multilevel approximation, the new method can not only solve the present problem on a single level with higher accuracy and lower computational cost, but also produce a highly sparse discrete algebraic system. These observations are obtained by taking the direct approach of numerical experimentation.

Suggested Citation

  • Zhiyong Liu & Qiuyan Xu, 2019. "A Multiscale RBF Collocation Method for the Numerical Solution of Partial Differential Equations," Mathematics, MDPI, vol. 7(10), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:964-:d:276034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/964/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghao Hu & Lihua Wang & Fan Yang & Yueting Zhou, 2023. "Weighted Radial Basis Collocation Method for the Nonlinear Inverse Helmholtz Problems," Mathematics, MDPI, vol. 11(3), pages 1-29, January.
    2. Wang, Rong & Xu, Qiuyan & Liu, Zhiyong & Yang, Jiye, 2023. "Fast meshfree methods for nonlinear radiation diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    3. Ju, Yuejuan & Yang, Jiye & Liu, Zhiyong & Xu, Qiuyan, 2023. "Meshfree methods for the variable-order fractional advection–diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 489-514.
    4. Xu Xu & Jinyu Guo & Peixin Ye & Wenhui Zhang, 2023. "Approximation Properties of the Vector Weak Rescaled Pure Greedy Algorithm," Mathematics, MDPI, vol. 11(9), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:964-:d:276034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.