IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i7p108-d154293.html
   My bibliography  Save this article

Near Fixed Point Theorems in the Space of Fuzzy Numbers

Author

Listed:
  • Hsien-Chung Wu

    (Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan)

Abstract

The fuzzy numbers are fuzzy sets owning some elegant mathematical structures. The space consisting of all fuzzy numbers cannot form a vector space because it lacks the concept of the additive inverse element. In other words, the space of fuzzy numbers cannot be a normed space even though the normed structure can be defined on this space. This also says that the fixed point theorems established in the normed space cannot apply directly to the space of fuzzy numbers. The purpose of this paper is to propose the concept of near fixed point in the space of fuzzy numbers and to study its existence. In order to consider the contraction of fuzzy-number-valued function, the concepts of near metric space and near normed space of fuzzy numbers are proposed based on the almost identical concept. The concepts of Cauchy sequences in near metric space and near normed space of fuzzy numbers are also proposed. Under these settings, the existence of near fixed points of fuzzy-number-valued contraction function in complete near metric space and near Banach space of fuzzy numbers are established.

Suggested Citation

  • Hsien-Chung Wu, 2018. "Near Fixed Point Theorems in the Space of Fuzzy Numbers," Mathematics, MDPI, vol. 6(7), pages 1-27, June.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:7:p:108-:d:154293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/7/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/7/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cho, Yeol Je & Sedghi, Shaban & Shobe, Nabi, 2009. "Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2233-2244.
    2. Abu-Donia, H.M., 2007. "Common fixed point theorems for fuzzy mappings in metric space under ϕ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 538-543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azam, Akbar & Arshad, Muhammad & Beg, Ismat, 2009. "Fixed points of fuzzy contractive and fuzzy locally contractive maps," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2836-2841.
    2. Kamran, Tayyab, 2008. "Common fixed points theorems for fuzzy mappings," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1378-1382.
    3. Qiu, Dong & Shu, Lan & Guan, Jian, 2009. "Common fixed point theorems for fuzzy mappings under Φ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 360-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:7:p:108-:d:154293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.