IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i6p92-d149790.html
   My bibliography  Save this article

A Novel ( R , S )-Norm Entropy Measure of Intuitionistic Fuzzy Sets and Its Applications in Multi-Attribute Decision-Making

Author

Listed:
  • Harish Garg

    (School of Mathematics, Thapar Institute of Engineering & Technology, Deemed University, Patiala 147004, Punjab, India)

  • Jaspreet Kaur

    (School of Mathematics, Thapar Institute of Engineering & Technology, Deemed University, Patiala 147004, Punjab, India)

Abstract

The objective of this manuscript is to present a novel information measure for measuring the degree of fuzziness in intuitionistic fuzzy sets (IFSs). To achieve it, we define an ( R , S ) -norm-based information measure called the entropy to measure the degree of fuzziness of the set. Then, we prove that the proposed entropy measure is a valid measure and satisfies certain properties. An illustrative example related to a linguistic variable is given to demonstrate it. Then, we utilized it to propose two decision-making approaches to solve the multi-attribute decision-making (MADM) problem in the IFS environment by considering the attribute weights as either partially known or completely unknown. Finally, a practical example is provided to illustrate the decision-making process. The results corresponding to different pairs of ( R , S ) give different choices to the decision-maker to assess their results.

Suggested Citation

  • Harish Garg & Jaspreet Kaur, 2018. "A Novel ( R , S )-Norm Entropy Measure of Intuitionistic Fuzzy Sets and Its Applications in Multi-Attribute Decision-Making," Mathematics, MDPI, vol. 6(6), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:6:p:92-:d:149790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/6/92/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/6/92/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Li & Hegong Lei & Jun Wang, 2020. "Q -Rung Probabilistic Dual Hesitant Fuzzy Sets and Their Application in Multi-Attribute Decision-Making," Mathematics, MDPI, vol. 8(9), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    2. Guh, Yuh-Yuan, 1997. "Introduction to a new weighting method -- Hierarchy consistency analysis," European Journal of Operational Research, Elsevier, vol. 102(1), pages 215-226, October.
    3. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    4. Xiaoxia Li, 2022. "Research on the Development Level of Rural E-Commerce in China Based on Analytic Hierarchy and Systematic Clustering Method," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    5. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    6. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    7. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    8. Li-zhu Yue & Jia-wei Zhang & Yue Lv, 2024. "Pyramid-Shaped Indicators: Evaluating the Robustness of Scheme Comparisons Under Weight Uncertainty," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 631-656, September.
    9. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    10. Sudhakar Yedla & Ram M. Shrestha, 2007. "Application of analytic hierarchy process to prioritize urban transport options: Comparative analysis of group aggregation methods," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-011, Indira Gandhi Institute of Development Research, Mumbai, India.
    11. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    12. Radojko Lukic, 2020. "Analysis Of The Efficiency Of Trade In Oil Derivatives In Serbia By Applying The Fuzzy Ahp-Topsis Method," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(3), pages 80-98, September.
    13. Ya-Qiang Xu & Le-Sheng Jin & Zhen-Song Chen & Ronald R. Yager & Jana Špirková & Martin Kalina & Surajit Borkotokey, 2022. "Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information," Mathematics, MDPI, vol. 10(4), pages 1-11, February.
    14. Elvan Ender Altay & Diba Şenay & Zeynep Eyüpoğlu, 2021. "Outdoor Indicators for the Healthy Development of Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(6), pages 2517-2545, December.
    15. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    16. Baback Vaziri & Shaunak Dabadghao & Yuehwern Yih & Thomas L. Morin & Mark Lehto, 2020. "Crowd-Ranking: a Markov-based method for ranking alternatives," Operational Research, Springer, vol. 20(1), pages 279-295, March.
    17. Berumen, Sergio A. & Pérez-Megino, Luis P., 2016. "Ranking Socioeconómico para el Desarrollo de las Regiones Carboníferas en Europa || Socioeconomic Ranking for the Development of coal-mining regions in Europe," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 21(1), pages 39-57, June.
    18. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    19. Jain, Bharat A. & Nag, Barin N., 1996. "A decision-support model for investment decisions in new ventures," European Journal of Operational Research, Elsevier, vol. 90(3), pages 473-486, May.
    20. Wiebke Mohr & Anika Rädke & Adel Afi & Franka Mühlichen & Moritz Platen & Annelie Scharf & Bernhard Michalowsky & Wolfgang Hoffmann, 2022. "Development of a Quantitative Preference Instrument for Person-Centered Dementia Care—Stage 2: Insights from a Formative Qualitative Study to Design and Pretest a Dementia-Friendly Analytic Hierarchy ," IJERPH, MDPI, vol. 19(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:6:p:92-:d:149790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.