IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i10p183-d172755.html
   My bibliography  Save this article

An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem

Author

Listed:
  • Tamer F. Abdelmaguid

    (Department of Mechanical Engineering, School of Sciences and Engineering, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
    Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

Abstract

Finding a minimum spanning tree in a given network is a famous combinatorial optimization problem that appears in different engineering applications. Even though this problem is solvable in polynomial time, having efficient mathematical programming models is important as they can provide insights for formulating larger models that integrate other decisions in more complex applications. In the literature, there are ten different integer and mixed integer linear programming (MILP) models for this problem. They are variants of set packing, cuts, network flow and node level formulations. In addition, this paper introduces an efficient node level MILP model. Comparisons for the eleven models are provided. First, the models are compared in terms of the number of decision variables and the number of constraints. Then, computational comparisons using a commercial MILP solver on sets of randomly generated instances of different sizes are conducted. Results provide evidence that the proposed MILP model is competitive in terms of the computational time needed for proving optimality of generated solutions for instances with up to 50 nodes. Meanwhile, the LP relaxation of a multi-commodity flow MILP model which has integer polyhedron provides stable computational times despite its larger size.

Suggested Citation

  • Tamer F. Abdelmaguid, 2018. "An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem," Mathematics, MDPI, vol. 6(10), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:183-:d:172755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/10/183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/10/183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahreddine Hafsi & Sami Elaoud & Manoranjan Mishra & Mohsen Akrout, 2018. "Automated Framework for Water Looped Network Equilibrium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 641-657, January.
    2. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    2. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    3. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    4. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    5. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    6. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    7. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    8. Thomas L. Morin & Roy E. Marsten, 1974. "Brand-and-Bound Strategies for Dynamic Programming," Discussion Papers 106, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. G. Rius-Sorolla & J. Maheut & Jairo R. Coronado-Hernandez & J. P. Garcia-Sabater, 2020. "Lagrangian relaxation of the generic materials and operations planning model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 105-123, March.
    10. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    12. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    13. Horbach, Andrei, 2005. "Combinatorial relaxation of the k-traveling salesman problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 599, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Arianna Alfieri & Shuyu Zhou & Rosario Scatamacchia & Steef L. van de Velde, 2021. "Dynamic programming algorithms and Lagrangian lower bounds for a discrete lot streaming problem in a two-machine flow shop," 4OR, Springer, vol. 19(2), pages 265-288, June.
    15. Peter Reiter & Walter Gutjahr, 2012. "Exact hybrid algorithms for solving a bi-objective vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 19-43, March.
    16. Daniel Adelman, 2004. "A Price-Directed Approach to Stochastic Inventory/Routing," Operations Research, INFORMS, vol. 52(4), pages 499-514, August.
    17. Laureano Escudero, 2009. "On a mixture of the fix-and-relax coordination and Lagrangian substitution schemes for multistage stochastic mixed integer programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 5-29, July.
    18. Rathinam, Sivakumar & Sengupta, Raja, 2006. "Matroid Intersection and its application to a Multiple Depot, Multiple TSP," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9sj6585p, Institute of Transportation Studies, UC Berkeley.
    19. Marcel Turkensteen & Dmitry Malyshev & Boris Goldengorin & Panos M. Pardalos, 2017. "The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 68(3), pages 601-622, July.
    20. P. Chardaire & G. P. McKeown & S. A. Verity-Harrison & S. B. Richardson, 2005. "Solving a Time-Space Network Formulation for the Convoy Movement Problem," Operations Research, INFORMS, vol. 53(2), pages 219-230, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:183-:d:172755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.