IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i10p183-d172755.html
   My bibliography  Save this article

An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem

Author

Listed:
  • Tamer F. Abdelmaguid

    (Department of Mechanical Engineering, School of Sciences and Engineering, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
    Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

Abstract

Finding a minimum spanning tree in a given network is a famous combinatorial optimization problem that appears in different engineering applications. Even though this problem is solvable in polynomial time, having efficient mathematical programming models is important as they can provide insights for formulating larger models that integrate other decisions in more complex applications. In the literature, there are ten different integer and mixed integer linear programming (MILP) models for this problem. They are variants of set packing, cuts, network flow and node level formulations. In addition, this paper introduces an efficient node level MILP model. Comparisons for the eleven models are provided. First, the models are compared in terms of the number of decision variables and the number of constraints. Then, computational comparisons using a commercial MILP solver on sets of randomly generated instances of different sizes are conducted. Results provide evidence that the proposed MILP model is competitive in terms of the computational time needed for proving optimality of generated solutions for instances with up to 50 nodes. Meanwhile, the LP relaxation of a multi-commodity flow MILP model which has integer polyhedron provides stable computational times despite its larger size.

Suggested Citation

  • Tamer F. Abdelmaguid, 2018. "An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree Problem," Mathematics, MDPI, vol. 6(10), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:183-:d:172755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/10/183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/10/183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahreddine Hafsi & Sami Elaoud & Manoranjan Mishra & Mohsen Akrout, 2018. "Automated Framework for Water Looped Network Equilibrium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 641-657, January.
    2. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    2. Cécile Bastidon & Michael Bordo & Antoine Parent & Marc Daniel Weidenmier, 2023. "Another history of global financial markets: Local stock market integration since 1913 from a network perspective," The World Economy, Wiley Blackwell, vol. 46(8), pages 2456-2477, August.
    3. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    4. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    5. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    7. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    8. Horbach, Andrei, 2005. "Combinatorial relaxation of the k-traveling salesman problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 599, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Peter Reiter & Walter Gutjahr, 2012. "Exact hybrid algorithms for solving a bi-objective vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 19-43, March.
    10. Rathinam, Sivakumar & Sengupta, Raja, 2006. "Matroid Intersection and its application to a Multiple Depot, Multiple TSP," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9sj6585p, Institute of Transportation Studies, UC Berkeley.
    11. Marcel Turkensteen & Dmitry Malyshev & Boris Goldengorin & Panos M. Pardalos, 2017. "The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 68(3), pages 601-622, July.
    12. Igor Litvinchev & Socorro Rangel & Jania Saucedo, 2010. "A Lagrangian bound for many-to-many assignment problems," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 241-257, April.
    13. Fatemeh Keshavarz-Ghorbani & Seyed Hamid Reza Pasandideh, 2022. "A Lagrangian relaxation algorithm for optimizing a bi-objective agro-supply chain model considering CO2 emissions," Annals of Operations Research, Springer, vol. 314(2), pages 497-527, July.
    14. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    15. Zamani, Reza & Lau, Sim Kim, 2010. "Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 82-88, February.
    16. Bastidon, Cécile & Jawadi, Fredj, 2024. "Trade fragmentation and volatility-of-volatility networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    17. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    18. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    19. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    20. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:183-:d:172755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.