Author
Listed:
- Abdulrahman K. Alnaim
(Department of Management Information Systems, School of Business, King Faisal University, Hofuf 31982, Saudi Arabia)
- Ahmed M. Alwakeel
(Faculty of Computers & Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia)
Abstract
This study proposes a Zero Trust security framework for 6G-enabled Cyber-Physical Systems (CPS), integrating Adaptive Access Control (AAC), end-to-end encryption, and blockchain to enhance security, scalability, and real-time threat detection. As 6G networks facilitate massive device connectivity and low-latency communication, traditional perimeter-based security models are inadequate against evolving cyber threats such as Man-in-the-Middle (MITM) attacks, Distributed Denial-of-Service (DDoS), and data breaches. Zero Trust security eliminates implicit trust by enforcing continuous authentication, strict access control, and real-time anomaly detection to mitigate potential threats dynamically. The proposed framework leverages blockchain technology to ensure tamper-proof data integrity and decentralized authentication, preventing unauthorized modifications to CPS data. Additionally, AI-driven anomaly detection identifies suspicious behavior in real time, optimizing security response mechanisms and reducing false positives. Experimental evaluations demonstrate a 40% reduction in MITM attack success rates, 5.8% improvement in authentication efficiency, and 63.5% lower latency compared to traditional security methods. The framework also achieves high scalability and energy efficiency, maintaining consistent throughput and response times across large-scale CPS deployments. These findings underscore the transformative potential of Zero Trust security in 6G-enabled CPS, particularly in mission-critical applications such as healthcare, smart infrastructure, and industrial automation. By integrating blockchain-based authentication, AI-powered threat detection, and adaptive access control, this research presents a scalable and resource-efficient solution for securing next-generation CPS architectures. Future work will explore quantum-safe cryptography and federated learning to further enhance security, ensuring long-term resilience in highly dynamic network environments.
Suggested Citation
Abdulrahman K. Alnaim & Ahmed M. Alwakeel, 2025.
"Zero Trust Strategies for Cyber-Physical Systems in 6G Networks,"
Mathematics, MDPI, vol. 13(7), pages 1-29, March.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:7:p:1108-:d:1622282
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1108-:d:1622282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.