Author
Listed:
- Fahim Sufi
(School of Public Health and Preventive Medicine, Monash University, Australia, VIC 3004, Australia)
- Musleh Alsulami
(Department of Software Engineering, College of Computing, Umm Al-Qura University, Makkah 21961, Saudi Arabia)
Abstract
Open-source disaster intelligence (OSDI) is crucial for improving situational awareness, disaster preparedness, and real-time decision-making. Traditional OSDI frameworks often rely on social media data, which are susceptible to misinformation and credibility issues. This study proposes a novel AI-driven framework utilizing automated data collection from 444 large-scale online news portals, including CNN, BBC, CBS News, and The Guardian, to enhance data reliability. Over a 514-day period (27 September 2023 to 26 February 2025), 1.25 million news articles were collected, of which 17,884 were autonomously classified as disaster-related using Generative Pre-Trained Transformer (GPT) models. The analysis identified 185 distinct countries and 6068 unique locations, offering unprecedented geospatial and temporal intelligence. Advanced clustering and predictive analytics techniques, including K-means, DBSCAN, seasonal decomposition (STL), Fourier transform, and ARIMA, were employed to detect geographical hotspots, cyclical patterns, and temporal dependencies. The ARIMA (2, 1, 2) model achieved a mean squared error (MSE) of 823,761, demonstrating high predictive accuracy. Key findings highlight that the USA (6548 disasters), India (1393 disasters), and Australia (1260 disasters) are the most disaster-prone countries, while hurricanes/typhoons/cyclones (5227 occurrences), floods (3360 occurrences), and wildfires (2724 occurrences) are the most frequent disaster types. The framework establishes a comprehensive methodology for integrating geospatial clustering, temporal analysis, and multimodal data processing in OSDI. By leveraging AI automation and diverse news sources, this study provides a scalable, adaptable, and ethically robust solution for proactive disaster management, improving global resilience and preparedness.
Suggested Citation
Fahim Sufi & Musleh Alsulami, 2025.
"AI-Driven Global Disaster Intelligence from News Media,"
Mathematics, MDPI, vol. 13(7), pages 1-28, March.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:7:p:1083-:d:1620798
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1083-:d:1620798. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.