Author
Listed:
- César Luis Moreno González
(Systems and Computing Engineering Department, Universidad de los Andes, Bogotá 111711, Colombia
These authors contributed equally to this work.)
- Germán A. Montoya
(Systems and Computing Engineering Department, Universidad de los Andes, Bogotá 111711, Colombia
These authors contributed equally to this work.)
- Carlos Lozano Garzón
(Systems and Computing Engineering Department, Universidad de los Andes, Bogotá 111711, Colombia
These authors contributed equally to this work.)
Abstract
Natural disasters continuously threaten populations worldwide, with hydrometeorological events standing out due to their unpredictability, rapid onset, and significant destructive capacity. However, developing countries often face severe budgetary constraints and rely heavily on international support, limiting their ability to implement optimal disaster response strategies. This study addresses these challenges by developing and implementing YOLOv8-based deep learning models trained on high-resolution satellite imagery from the Maxar GeoEye-1 satellite. Unlike prior studies, we introduce a manually labeled dataset, consisting of 1400 undamaged and 1200 damaged buildings, derived from pre- and post-Hurricane Maria imagery. This dataset has been publicly released, providing a benchmark for future disaster assessment research. Additionally, we conduct a systematic evaluation of optimization strategies, comparing SGD with momentum, RMSProp, Adam, AdaMax, NAdam, and AdamW. Our results demonstrate that SGD with momentum outperforms Adam-based optimizers in training stability, convergence speed, and reliability across higher confidence thresholds, leading to more robust and consistent disaster damage predictions. To enhance usability, we propose deploying the trained model via a REST API, enabling real-time damage assessment with minimal computational resources, making it a low-cost, scalable tool for government agencies and humanitarian organizations. These findings contribute to machine learning-based disaster response, offering an efficient, cost-effective framework for large-scale damage assessment and reinforcing the importance of model selection, hyperparameter tuning, and optimization functions in critical real-world applications.
Suggested Citation
César Luis Moreno González & Germán A. Montoya & Carlos Lozano Garzón, 2025.
"Toward Reliable Post-Disaster Assessment: Advancing Building Damage Detection Using You Only Look Once Convolutional Neural Network and Satellite Imagery,"
Mathematics, MDPI, vol. 13(7), pages 1-29, March.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:7:p:1041-:d:1618618
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1041-:d:1618618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.