Author
Listed:
- Oyebayo Ridwan Olaniran
(Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Ilorin 1515, Nigeria)
- Ali Rashash R. Alzahrani
(Mathematics Department, Faculty of Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia)
Abstract
The pervasive challenge of missing data in scientific research forces a critical trade-off: discarding incomplete observations, which risks significant information loss, while conventional imputation methods struggle to maintain accuracy in high-dimensional settings. Although approaches like multiple imputation (MI) and random forest (RF) proximity-based imputation offer improvements over naive deletion, they exhibit limitations in complex missing data scenarios or sparse high-dimensional settings. To address these gaps, we propose a novel integration of Multiple Imputation by Chained Equations (MICE) with Bayesian Random Forest (BRF), leveraging MICE’s iterative flexibility and BRF’s probabilistic robustness to enhance the imputation accuracy and downstream predictive performance. Our hybrid framework, BRF-MICE, uniquely combines the efficiency of MICE’s chained equations with BRF’s ability to quantify uncertainty through Bayesian tree ensembles, providing stable parameter estimates even under extreme missingness. We empirically validate this approach using synthetic datasets with controlled missingness mechanisms (MCAR, MAR, MNAR) and dimensionality, contrasting it against established methods, including RF and Bayesian Additive Regression Trees (BART). The results demonstrate that BRF-MICE achieves a superior performance in classification and regression tasks, with a 15–20% lower error under varying missingness conditions compared to RF and BART while maintaining computational scalability. The method’s iterative Bayesian updates effectively propagate imputation uncertainty, reducing overconfidence in high-dimensional predictions, a key weakness of frequentist alternatives.
Suggested Citation
Oyebayo Ridwan Olaniran & Ali Rashash R. Alzahrani, 2025.
"Bayesian Random Forest with Multiple Imputation by Chain Equations for High-Dimensional Missing Data: A Simulation Study,"
Mathematics, MDPI, vol. 13(6), pages 1-32, March.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:6:p:956-:d:1611773
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:956-:d:1611773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.