Author
Listed:
- Fahim Sufi
(School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia)
- Musleh Alsulami
(Department of Software Engineering, College of Computing, Umm Al-Qura University, Makkah 21961, Saudi Arabia)
Abstract
The escalating prevalence of cyber threats across industries underscores the urgent need for robust analytical frameworks to understand their clustering, prevalence, and distribution. This study addresses the challenge of quantifying and analyzing relationships between 95 distinct cyberattack types and 29 industry sectors, leveraging a dataset of 9261 entries filtered from over 1 million news articles. Existing approaches often fail to capture nuanced patterns across such complex datasets, justifying the need for innovative methodologies. We present a rigorous mathematical framework integrating chi-square tests, Bayesian inference, Gaussian Mixture Models (GMMs), and Spectral Clustering. This framework identifies key patterns, such as 1150 Zero-Day Exploits clustered in the IT and Telecommunications sector, 732 Advanced Persistent Threats (APTs) in Government and Public Administration, and Malware with a posterior probability of 0.287 dominating the Healthcare sector. Temporal analyses reveal periodic spikes, such as in Zero-Day Exploits, and a persistent presence of Social Engineering Attacks, with 1397 occurrences across industries. These findings are quantified using significance scores (mean: 3.25 ± 0.7) and posterior probabilities, providing evidence for industry-specific vulnerabilities. This research offers actionable insights for policymakers, cybersecurity professionals, and organizational decision makers by equipping them with a data-driven understanding of sector-specific risks. The mathematical formulations are replicable and scalable, enabling organizations to allocate resources effectively and develop proactive defenses against emerging threats. By bridging mathematical theory to real-world cybersecurity challenges, this study delivers impactful contributions toward safeguarding critical infrastructure and digital assets.
Suggested Citation
Fahim Sufi & Musleh Alsulami, 2025.
"Mathematical Modeling and Clustering Framework for Cyber Threat Analysis Across Industries,"
Mathematics, MDPI, vol. 13(4), pages 1-27, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:655-:d:1592672
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:655-:d:1592672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.