IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p654-d1592658.html
   My bibliography  Save this article

Research on Multi-Center Path Optimization for Emergency Events Based on an Improved Particle Swarm Optimization Algorithm

Author

Listed:
  • Zeyu Zou

    (School of Business, Jiangnan University, Wuxi 214122, China)

  • Hui Zeng

    (School of Design, Jiangnan University, Wuxi 214122, China)

  • Xiaodong Zheng

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Macau 999078, China)

  • Junming Chen

    (Faculty of Humanities and Arts, Macau University of Science and Technology, Macau 999078, China)

Abstract

Emergency events pose critical challenges to national and social stability, requiring efficient and timely responses to mitigate their impact. In the initial stages of an emergency, decision-makers face the dual challenge of minimizing transportation costs while adhering to stringent rescue time constraints. To address these issues, this study proposes a two-stage optimization model aimed at ensuring the equitable distribution of disaster relief materials across multiple distribution centers. The model seeks to minimize the overall cost, encompassing vehicle dispatch expenses, fuel consumption, and time window penalty costs, thereby achieving a balance between efficiency and fairness. To solve this complex optimization problem, a hybrid algorithm combining genetic algorithms and particle swarm optimization was designed. This hybrid approach leverages the global exploration capability of genetic algorithms and the fast convergence of particle swarm optimization to achieve superior performance in solving real-world logistics challenges. Case studies were conducted to evaluate the feasibility and effectiveness of both the proposed model and the algorithm. Results indicate that the model accurately reflects the dynamics of emergency logistics operations, while the hybrid algorithm exhibits strong local optimization capabilities and robust performance in handling diverse and complex scenarios. Experimental findings underscore the potential of the proposed approach in optimizing emergency response logistics. The hybrid algorithm consistently achieves significant reductions in total cost while maintaining fairness in material distribution. These results demonstrate the algorithm’s applicability to a wide range of disaster scenarios, offering a reliable and efficient tool for emergency planners. This study not only contributes to the body of knowledge in emergency logistics optimization but also provides practical insights for policymakers and practitioners striving to improve disaster response strategies.

Suggested Citation

  • Zeyu Zou & Hui Zeng & Xiaodong Zheng & Junming Chen, 2025. "Research on Multi-Center Path Optimization for Emergency Events Based on an Improved Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 13(4), pages 1-22, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:654-:d:1592658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    3. Burcu Balcik & Seyed Iravani & Karen Smilowitz, 2014. "Multi-vehicle sequential resource allocation for a nonprofit distribution system," IISE Transactions, Taylor & Francis Journals, vol. 46(12), pages 1279-1297, December.
    4. J. Molina & A. D. López-Sánchez & A. G. Hernández-Díaz & I. Martínez-Salazar, 2018. "A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems," Journal of Heuristics, Springer, vol. 24(2), pages 111-133, April.
    5. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    6. Lawrence Phillips & Carlos Bana e Costa, 2007. "Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing," Annals of Operations Research, Springer, vol. 154(1), pages 51-68, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    2. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    5. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    6. Christophe Duhamel & Andréa Cynthia Santos & Daniel Brasil & Eric Châtelet & Babiga Birregah, 2016. "Connecting a population dynamic model with a multi-period location-allocation problem for post-disaster relief operations," Annals of Operations Research, Springer, vol. 247(2), pages 693-713, December.
    7. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    8. Divya J. Nair & David Rey & Vinayak V. Dixit, 2017. "Fair allocation and cost-effective routing models for food rescue and redistribution," IISE Transactions, Taylor & Francis Journals, vol. 49(12), pages 1172-1188, December.
    9. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    10. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    11. Nagurney, Anna & Salarpour, Mojtaba & Daniele, Patrizia, 2019. "An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints," International Journal of Production Economics, Elsevier, vol. 212(C), pages 212-226.
    12. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    13. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    14. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    15. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    16. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    17. Roh, Saeyeon & Pettit, Stephen & Harris, Irina & Beresford, Anthony, 2015. "The pre-positioning of warehouses at regional and local levels for a humanitarian relief organisation," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 616-628.
    18. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    19. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    20. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:654-:d:1592658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.