Author
Listed:
- Zhuo Liang
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Pengkun Quan
(School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China)
- Shichun Di
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Zhiming Huang
(Shanghai Zhida Technology Development Co., Ltd., Shanghai 200433, China)
Abstract
Redundant manipulators (RMs) are widely used in various fields due to their flexibility and versatility, but challenges remain in adjusting their inverse kinematics (IK) solutions. Adjustable IK solutions are crucial as they not only avoid joint limits but also enable the manipulability of the manipulator to be regulated. To address this issue, this paper proposes an IK optimization method. First, a performance metric for adjustable IK solutions is developed by introducing the motion-level factor. By setting the desired joint motion level, the IK solutions can be adjusted accordingly. Furthermore, a two-stage optimization algorithm is proposed to obtain the adjustable IK solutions. In the first stage, a modified gradient projection method is used to optimize the performance metric, generating a set of initial optimal solutions. However, cumulative errors may arise during this stage. To counteract this, the forward and backward reaching inverse kinematics algorithm is employed in the second stage to enhance the accuracy of the initial solutions. Finally, the effectiveness of the proposed method is validated through simulations and experiments using a planar cable-driven redundant manipulator. The results demonstrate that the IK solutions can be adjusted by modifying the motion-level factors. The proposed two-stage optimization algorithm integrates the advantages of the gradient projection method and the forward and backward reaching inverse kinematics algorithm, yielding a set of accurate and optimal IK solutions. Furthermore, the adjustable IK solutions facilitate the regulation of the RM’s manipulability, enhancing its adaptability and flexibility.
Suggested Citation
Zhuo Liang & Pengkun Quan & Shichun Di & Zhiming Huang, 2025.
"Inverse Kinematics Optimization for Redundant Manipulators Using Motion-Level Factor,"
Mathematics, MDPI, vol. 13(4), pages 1-21, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:624-:d:1591054
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:624-:d:1591054. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.