Author
Listed:
- Osman Tunç
(Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil University, 65080 Van, Turkey)
- Cemil Tunç
(Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yıl University, 65080 Van, Turkey)
Abstract
In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability.
Suggested Citation
Osman Tunç & Cemil Tunç, 2025.
"On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays,"
Mathematics, MDPI, vol. 13(4), pages 1-20, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:606-:d:1589841
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:606-:d:1589841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.