IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p599-d1589342.html
   My bibliography  Save this article

Heat-Flux Relaxation and the Possibility of Spatial Interactions in Higher-Grade Materials

Author

Listed:
  • Vito Antonio Cimmelli

    (Department of Fundamental and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy)

Abstract

We investigate the thermodynamic compatibility of weakly nonlocal materials with constitutive equations depending on the third spatial gradient of the deformation and the heat flux ruled by an independent balance law. In such materials, the molecules experience long-range interactions. Examples of biological systems undergoing nonlocal interactions are given. Under the hypothesis of weak nonlocality (constitutive equations depending on the gradients of the unknown fields), we exploit the second law of thermodynamics by considering the spatial differential consequences (gradients) of the balance laws as additional equations to be substituted into the entropy inequality, up to the order of the gradients entering the state space. As a consequence of such a procedure, we obtain generalized constitutive laws for the stress tensor and the specific entropy, as well as new forms of the balance equations. Such equations are, in general, parabolic, although hyperbolic situations are also possible. For small deformations of homogeneous and isotropic bodies, under the validity of a generalized Maxwell–Cattaneo equation for the heat flux, which depends on the deformation too, we study the propagation of small-amplitude thermomechanical waves, proving that mechanical, thermal and thermomechanical waves are possible.

Suggested Citation

  • Vito Antonio Cimmelli, 2025. "Heat-Flux Relaxation and the Possibility of Spatial Interactions in Higher-Grade Materials," Mathematics, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:599-:d:1589342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/599/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:599-:d:1589342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.