Author
Listed:
- Ying Zhang
(Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education), Central South University, Changsha 410083, China
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)
- Shikun Dai
(Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Ministry of Education), Central South University, Changsha 410083, China
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)
Abstract
Balancing efficiency and accuracy is often challenging in the numerical solution of three-dimensional (3D) point source acoustic wave equations for layered media. To overcome this, an efficient solution method in the spatial-wavenumber domain is proposed, utilizing the Non-Uniform Fast Fourier Transform (NUFFT) to achieve arbitrary non-uniform sampling. By performing a two-dimensional (2D) Fourier transform on the 3D acoustic wave equation in the horizontal direction, the 3D equation is transformed into a one-dimensional (1D) space-wavenumber-domain ordinary differential equation, effectively simplifying significant 3D problems into one-dimensional problems and significantly reducing the demand for memory. The one-dimensional finite-element method is applied to solve the boundary value problem, resulting in a pentadiagonal system of equations. The Thomas algorithm then efficiently solves the system, yielding the layered wavefield distribution in the space-wavenumber domain. Finally, the wavefield distribution in the spatial domain is reconstructed through a 2D inverse Fourier transform. The correctness of the algorithm was verified by comparing it with the finite-element method. The analysis of the half-space model shows that this method can accurately calculate the wavefield distribution in the air layer considering the air layer while exhibiting high efficiency and computational stability in ultra-large-scale models. The three-layer medium model test further verified the adaptability and accuracy of the algorithm in calculating the distribution of acoustic waves in layered media. Through a sensitivity analysis, it is shown that the denser the mesh node partitioning, the higher the medium velocity, and the lower the point source frequency, the higher the accuracy of the algorithm. An algorithm efficiency analysis shows that this method has extremely low memory usage and high computational efficiency and can quickly solve large-scale models even on personal computers. Compared with traditional FEM, the algorithm has much higher advantages in terms of memory usage and efficiency. This method provides a new approach to the numerical solution of partial differential equations. It lays an essential foundation for background field calculation in the scattering seismic numerical simulation and full-waveform inversion of acoustic waves, with strong theoretical significance and practical application value.
Suggested Citation
Ying Zhang & Shikun Dai, 2025.
"Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT,"
Mathematics, MDPI, vol. 13(4), pages 1-20, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:571-:d:1587036
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:571-:d:1587036. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.