Author
Listed:
- Bhuvaneshwar Doorgakant
(Department of Electrical and Electronic Engineering, University of Mauritius, Réduit 80837, Mauritius)
- Tulsi Pawan Fowdur
(Department of Electrical and Electronic Engineering, University of Mauritius, Réduit 80837, Mauritius)
- Mobayode O. Akinsolu
(Faculty of Arts, Computing and Engineering, Wrexham University, Wrexham LL11 2AW, UK)
Abstract
5G, the fifth-generation mobile network, is predicted to significantly increase the traditional trajectory of energy consumption. It now uses four times as much energy as 4G, the fourth-generation mobile network. As a result, compared to previous generations, 5G’s increased cell density makes energy efficiency a top priority. The objective of this paper is to formulate end-to-end power consumption models for three different 5G radio access network (RAN) deployment architectures, namely the 5G distributed RAN, the 5G centralized RAN with dedicated hardware and the 5G Cloud Centralized-RAN. The end-to-end modelling of the power consumption of a complete 5G system is obtained by combining the power models of individual components such as the base station, the core network, front-haul, mid-haul and backhaul links, as applicable for the different architectures. The authors considered the deployment of software-defined networking (SDN) at the 5G Core network and gigabit passive optical network as access technology for the backhaul network. This study examines the end-to-end power consumption of 5G networks across various architectures, focusing on key dependent parameters. The findings indicate that the 5G distributed RAN scenario has the highest power consumption among the three models evaluated. In comparison, the centralized 5G and 5G Cloud C-RAN scenarios consume 12% and 20% less power, respectively, than the Centralized RAN solution. Additionally, calculations reveal that base stations account for 74% to 78% of the total power consumption in 5G networks. These insights helped pioneer the calculation of the end-to-end power requirements of different 5G network architectures, forming a solid foundation for their sustainable implementation. Furthermore, this study lays the groundwork for extending power modeling to future 6G networks.
Suggested Citation
Bhuvaneshwar Doorgakant & Tulsi Pawan Fowdur & Mobayode O. Akinsolu, 2025.
"End-to-End Power Models for 5G Radio Access Network Architectures with a Perspective on 6G,"
Mathematics, MDPI, vol. 13(3), pages 1-36, January.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:3:p:466-:d:1580698
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:466-:d:1580698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.