IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p242-d1565846.html
   My bibliography  Save this article

Extensions of Riordan Arrays and Their Applications

Author

Listed:
  • Paul Barry

    (Faculty of Science and Computing, South East Technological University, X91 CF21 Waterford, Ireland)

Abstract

The Riordan group of Riordan arrays was first described in 1991, and since then, it has provided useful tools for the study of areas such as combinatorial identities, polynomial sequences (including families of orthogonal polynomials), lattice path enumeration, and linear recurrences. Useful extensions of the idea of a Riordan array have included almost Riordan arrays, double Riordan arrays, and their generalizations. After giving a brief overview of the Riordan group, we define two further extensions of the notion of Riordan arrays, and we give a number of applications for these extensions. The relevance of these applications indicates that these new extensions are worthy of study. The first extension is that of the reverse symmetrization of a Riordan array, for which we give two applications. The first application of this symmetrization is to the study of a family of Riordan arrays whose symmetrizations lead to the famous Robbins numbers as well as to numbers associated with the 20 vertex model of mathematical physics. We provide closed-form expressions for the elements of these arrays, and we also give a canonical Catalan factorization for them. We also describe an alternative family of Riordan arrays whose symmetrizations lead to the same integer sequences. The second application of this symmetrization process is to the area of the enumeration of lattice paths. We remain with the applications to lattice paths for the second extension of Riordan arrays that we introduce, which is the interleaved Riordan array . The methods used include generating functions, linear algebra, weighted compositions, and linear recurrences. In the case of the symmetrization process applied to Riordan arrays, we focus on the principal minor sequences of the resulting square matrices in the context of integrable lattice models.

Suggested Citation

  • Paul Barry, 2025. "Extensions of Riordan Arrays and Their Applications," Mathematics, MDPI, vol. 13(2), pages 1-25, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:242-:d:1565846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/242/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:242-:d:1565846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.