Author
Listed:
- Chenli Zhu
(College of the Environment, Liaoning University, Shenyang 110036, China)
- Linlin Ding
(College of the Information, Liaoning University, Shenyang 110036, China)
- Yimin Song
(School of Civil Engineering, North China University of Technology, Beijing 100144, China)
- Yuda Li
(College of the Information, Liaoning University, Shenyang 110036, China)
Abstract
As a prevalent geological hazard in underground engineering, the accurate prediction of mine earthquakes is crucial for ensuring operational safety and enhancing mining efficiency. The deformation localization method effectively predicts the instability of disaster rocks, yet the timing of mine earthquakes remains understudied. This study established a correlation between rock deformation localization and seismic activity within mines through theoretical derivations. A predictive model algorithm for forecasting mine earthquake timing was developed based on Saito’s theory, integrating optics, acoustics, and mathematical modeling theories. The “quiet period” was identified as a significant precursor; thus, the model used the initiation of deformation localization to accurately predict rock failure. Using the model, a coal mine in Inner Mongolia was selected as a case study to predict a historical mining earthquake. The results indicated that the following: (1) Deformation localization and the “quiet period” of microseismic (MS) and acoustic emission (AE) activities were identified as two key pre-cursory indicators. The model utilized the initiation time of deformation localization and the inflection point of the “quiet period” in MS and AE activity as primary parameters. (2) For predicting rock failure times, the earliest prediction time deviates from the actual failure time by 143 s. The accuracy rate of predicted time points falling within a 90% confidence interval of the actual failure times is 100%. The model achieved 60% in forecasting the occurrence times of mine earthquakes. (3) The model’s prediction accuracy improved as the starting time parameter more closely approximated the actual initiation time of deformation localization, with the accuracy increasing from 0% to 100%.
Suggested Citation
Chenli Zhu & Linlin Ding & Yimin Song & Yuda Li, 2024.
"A Method for Predicting the Timing of Mine Earthquakes Based on Deformation Localization States,"
Mathematics, MDPI, vol. 13(1), pages 1-20, December.
Handle:
RePEc:gam:jmathe:v:13:y:2024:i:1:p:40-:d:1553961
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:40-:d:1553961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.