IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p1032-d1367201.html
   My bibliography  Save this article

Updating to Optimal Parametric Values by Memory-Dependent Methods: Iterative Schemes of Fractional Type for Solving Nonlinear Equations

Author

Listed:
  • Chein-Shan Liu

    (Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan)

  • Chih-Wen Chang

    (Department of Mechanical Engineering, National United University, Miaoli 360302, Taiwan)

Abstract

In the paper, two nonlinear variants of the Newton method are developed for solving nonlinear equations. The derivative-free nonlinear fractional type of the one-step iterative scheme of a fourth-order convergence contains three parameters, whose optimal values are obtained by a memory-dependent updating method. Then, as the extensions of a one-step linear fractional type method, we explore the fractional types of two- and three-step iterative schemes, which possess sixth- and twelfth-order convergences when the parameters’ values are optimal; the efficiency indexes are 6 and 12 3 , respectively. An extra variable is supplemented into the second-degree Newton polynomial for the data interpolation of the two-step iterative scheme of fractional type, and a relaxation factor is accelerated by the memory-dependent method. Three memory-dependent updating methods are developed in the three-step iterative schemes of linear fractional type, whose performances are greatly strengthened. In the three-step iterative scheme, when the first step involves using the nonlinear fractional type model, the order of convergence is raised to sixteen. The efficiency index also increases to 16 3 , and a third-degree Newton polynomial is taken to update the values of optimal parameters.

Suggested Citation

  • Chein-Shan Liu & Chih-Wen Chang, 2024. "Updating to Optimal Parametric Values by Memory-Dependent Methods: Iterative Schemes of Fractional Type for Solving Nonlinear Equations," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1032-:d:1367201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/1032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/1032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G Thangkhenpau & Sunil Panday & Shubham Kumar Mittal & Lorentz Jäntschi, 2023. "Novel Parametric Families of with and without Memory Iterative Methods for Multiple Roots of Nonlinear Equations," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    2. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2023. "Dynamical Optimal Values of Parameters in the SSOR, AOR, and SAOR Testing Using Poisson Linear Equations," Mathematics, MDPI, vol. 11(18), pages 1-21, September.
    3. T. Lotfi & F. Soleymani & Z. Noori & A. Kılıçman & F. Khaksar Haghani, 2014. "Efficient Iterative Methods with and without Memory Possessing High Efficiency Indices," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, September.
    4. Muhammad Aslam Noor & Khalida Inayat Noor & Eisa Al-Said & Muhammad Waseem, 2010. "Some New Iterative Methods for Nonlinear Equations," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chein-Shan Liu & Chih-Wen Chang, 2024. "New Memory-Updating Methods in Two-Step Newton’s Variants for Solving Nonlinear Equations with High Efficiency Index," Mathematics, MDPI, vol. 12(4), pages 1-22, February.
    2. Ekta Sharma & Sunil Panday & Shubham Kumar Mittal & Dan-Marian Joița & Lavinia Lorena Pruteanu & Lorentz Jäntschi, 2023. "Derivative-Free Families of With- and Without-Memory Iterative Methods for Solving Nonlinear Equations and Their Engineering Applications," Mathematics, MDPI, vol. 11(21), pages 1-13, November.
    3. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2024. "Optimal Combination of the Splitting–Linearizing Method to SSOR and SAOR for Solving the System of Nonlinear Equations," Mathematics, MDPI, vol. 12(12), pages 1-24, June.
    4. Liu, Chein-Shan & Hong, Hong-Ki & Lee, Tsung-Lin, 2021. "A splitting method to solve a single nonlinear equation with derivative-free iterative schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 837-847.
    5. Sania Qureshi & Higinio Ramos & Abdul Karim Soomro, 2021. "A New Nonlinear Ninth-Order Root-Finding Method with Error Analysis and Basins of Attraction," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    6. Sunil Panday & Shubham Kumar Mittal & Carmen Elena Stoenoiu & Lorentz Jäntschi, 2024. "A New Adaptive Eleventh-Order Memory Algorithm for Solving Nonlinear Equations," Mathematics, MDPI, vol. 12(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1032-:d:1367201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.