IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p883-d1358568.html
   My bibliography  Save this article

A Modified Cure Rate Model Based on a Piecewise Distribution with Application to Lobular Carcinoma Data

Author

Listed:
  • Yolanda M. Gómez

    (Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile)

  • John L. Santibañez

    (Departamento de Matemática, Universidad de Atacama, Copiapó 7500015, Chile)

  • Vinicius F. Calsavara

    (Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA)

  • Héctor W. Gómez

    (Departamento de Estadística y Ciencia de Datos, Universidad de Antofagasta, Antofagasta 1240000, Chile)

  • Diego I. Gallardo

    (Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile)

Abstract

A novel cure rate model is introduced by considering, for the number of concurrent causes, the modified power series distribution and, for the time to event, the recently proposed power piecewise exponential distribution. This model includes a wide variety of cure rate models, such as binomial, Poisson, negative binomial, Haight, Borel, logarithmic, and restricted generalized Poisson. Some characteristics of the model are examined, and the estimation of parameters is performed using the Expectation–Maximization algorithm. A simulation study is presented to evaluate the performance of the estimators in finite samples. Finally, an application in a real medical dataset from a population-based study of incident cases of lobular carcinoma diagnosed in the state of São Paulo, Brazil, illustrates the advantages of the proposed model compared to other common cure rate models in the literature, particularly regarding the underestimation of the cure rate in other proposals and the improved precision in estimating the cure rate of our proposal.

Suggested Citation

  • Yolanda M. Gómez & John L. Santibañez & Vinicius F. Calsavara & Héctor W. Gómez & Diego I. Gallardo, 2024. "A Modified Cure Rate Model Based on a Piecewise Distribution with Application to Lobular Carcinoma Data," Mathematics, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:883-:d:1358568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    2. N. Balakrishnan & M. V. Koutras & F. S. Milienos, 2018. "A weighted Poisson distribution and its application to cure rate models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(17), pages 4297-4310, September.
    3. Mário Castro & Yolanda M. Gómez, 2020. "A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 677-692, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Azimi & Mahdy Esmailian & Diego I. Gallardo & Héctor J. Gómez, 2022. "A New Cure Rate Model Based on Flory–Schulz Distribution: Application to the Cancer Data," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    3. Alex Mota & Eder A. Milani & Jeremias Leão & Pedro L. Ramos & Paulo H. Ferreira & Oilson G. Junior & Vera L. D. Tomazella & Francisco Louzada, 2023. "A new cure rate frailty regression model based on a weighted Lindley distribution applied to stomach cancer data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 883-909, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:883-:d:1358568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.