IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p564-d1338394.html
   My bibliography  Save this article

Solitary Wave Solutions of a Hyperelastic Dispersive Equation

Author

Listed:
  • Yuheng Jiang

    (Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Yu Tian

    (Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Yao Qi

    (Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, Ministry of Education, Beijing 100876, China
    School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

This paper explores solitary wave solutions arising in the deformations of a hyperelastic compressible plate. Explicit traveling wave solution expressions with various parameters for the hyperelastic compressible plate are obtained and visualized. To analyze the perturbed equation, we employ geometric singular perturbation theory, Melnikov methods, and invariant manifold theory. The solitary wave solutions of the hyperelastic compressible plate do not persist under small perturbations for wave speed c > − β k 2 . Further exploration of nonlinear models that accurately depict the persistence of solitary wave solution on the significant physical processes under the K-S perturbation is recommended.

Suggested Citation

  • Yuheng Jiang & Yu Tian & Yao Qi, 2024. "Solitary Wave Solutions of a Hyperelastic Dispersive Equation," Mathematics, MDPI, vol. 12(4), pages 1-10, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:564-:d:1338394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalisch, Henrik & Lenells, Jonatan, 2005. "Numerical study of traveling-wave solutions for the Camassa–Holm equation," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 287-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parkes, E.J. & Vakhnenko, V.O., 2005. "Explicit solutions of the Camassa–Holm equation," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1309-1316.
    2. A. A. Alderremy & Hassan Khan & Rasool Shah & Shaban Aly & Dumitru Baleanu, 2020. "The Analytical Analysis of Time-Fractional Fornberg–Whitham Equations," Mathematics, MDPI, vol. 8(6), pages 1-14, June.
    3. Katrin Grunert & Audun Reigstad, 2021. "Traveling waves for the nonlinear variational wave equation," Partial Differential Equations and Applications, Springer, vol. 2(5), pages 1-21, October.
    4. Parkes, E.J., 2008. "Some periodic and solitary travelling-wave solutions of the short-pulse equation," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 154-159.
    5. Hendrik Ranocha & Manuel Quezada Luna & David I. Ketcheson, 2021. "On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-26, December.
    6. Abbasbandy, S. & Parkes, E.J., 2008. "Solitary smooth hump solutions of the Camassa–Holm equation by means of the homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 581-591.
    7. Yin, Jiuli & Tian, Lixin, 2009. "Stumpons and fractal-like wave solutions to the Dullin–Gottwald–Holm equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 643-648.
    8. Xianguo Geng & Ruomeng Li, 2019. "On a Vector Modified Yajima–Oikawa Long-Wave–Short-Wave Equation," Mathematics, MDPI, vol. 7(10), pages 1-23, October.
    9. Shijie Zeng & Yaqing Liu, 2023. "The Whitham Modulation Solution of the Complex Modified KdV Equation," Mathematics, MDPI, vol. 11(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:564-:d:1338394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.