IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p508-d1334643.html
   My bibliography  Save this article

Advancing Spectral Clustering for Categorical and Mixed-Type Data: Insights and Applications

Author

Listed:
  • Cinzia Di Nuzzo

    (Department of Economics and Business, University of Catania, Corso Italia, 55, 95129 Catania, Italy)

Abstract

This study focuses on adapting spectral clustering, a numeric data-clustering technique, for categorical and mixed-type data. The method enhances spectral clustering for categorical and mixed-type data with novel kernel functions, showing improved accuracy in real-world applications. Despite achieving better clustering for datasets with mixed variables, challenges remain in identifying suitable kernel functions for categorical relationships.

Suggested Citation

  • Cinzia Di Nuzzo, 2024. "Advancing Spectral Clustering for Categorical and Mixed-Type Data: Insights and Applications," Mathematics, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:508-:d:1334643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cinzia Di Nuzzo & Salvatore Ingrassia, 2022. "A mixture model approach to spectral clustering and application to textual data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1071-1097, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin & Zhang, Jingru & Lin, Wei, 2023. "Clustering multivariate count data via Dirichlet-multinomial network fusion," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:508-:d:1334643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.