IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i3p430-d1328865.html
   My bibliography  Save this article

Numerical Simulation of the Stability of Low Viscosity Ratio Viscoelastic Lid-Driven Cavity Flow Based on the Log-Conformation Representation (LCR) Algorithm

Author

Listed:
  • Lingjie Ke

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Qikun Wang

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

Log-Conformation Representation (LCR) method effectively enhances the stability of viscoelastic fluid flow driven by a cavity at high Wi numbers. However, its stability is relatively poor under low viscosity ratio conditions. In this study, three momentum equation stabilization algorithms (Both-Sides-Diffusion, Discrete Elastic Viscous Split Stress-Vorticity, and velocity–stress coupling) were tested and compared in OpenFOAM to assess their stabilizing effects on the LCR method under low viscosity ratio conditions. The evaluation was based on changes in average kinetic energy and the maximum critical time step. The results indicate that the different momentum equation stabilization algorithms improve the numerical oscillations observed in the numerical simulation of low viscosity ratio cavity-driven flow to varying extents. This enables a reduction in the viscosity ratio that can be stably simulated by 0.03 to 0.15. Furthermore, these cases using the momentum equation stabilization algorithms require time steps that are 33% to 100% shorter than those of the original cases. This demonstrates the promoting effect of the additional diffusion term in the momentum equation on stability under low viscosity ratio conditions. The combination of LCR and velocity–stress coupling was used to analyze the impact of viscosity ratios on velocity, logarithmic conformation tensor, and average kinetic energy. As the viscosity ratio decreases, the contribution of fluid elasticity increases, resulting in more pronounced variations in velocity and stress. However, the viscosity ratio has little effect on the stress boundary layer at the top cover and corners. Under conditions with the same Wi number, the average kinetic energy decreases as the viscosity ratio decreases until stability is achieved.

Suggested Citation

  • Lingjie Ke & Qikun Wang, 2024. "Numerical Simulation of the Stability of Low Viscosity Ratio Viscoelastic Lid-Driven Cavity Flow Based on the Log-Conformation Representation (LCR) Algorithm," Mathematics, MDPI, vol. 12(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:430-:d:1328865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/3/430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/3/430/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:430-:d:1328865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.