A Hybrid Strategy-Improved SSA-CNN-LSTM Model for Metro Passenger Flow Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huanyin Su & Shanglin Mo & Huizi Dai & Jincong Shen, 2024. "Short-Term Prediction of Origin–Destination Passenger Flow in Urban Rail Transit Systems with Multi-Source Data: A Deep Learning Method Fusing High-Dimensional Features," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Han Qiu & Rong Hu & Jiaqing Chen & Zihao Yuan, 2025. "Short-Term Electricity Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Improved Sparrow Search Algorithm–Convolutional Neural Network–Bidirectional Lon," Mathematics, MDPI, vol. 13(5), pages 1-32, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.More about this item
Keywords
urban transit; metro station passenger flow forecasting; improved sparrow search algorithm; convolutional neural networks; long short-term neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3929-:d:1543300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.