IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3720-d1530652.html
   My bibliography  Save this article

Notes on Cooperstein Ovoids in Finite Geometries of Type 𝖤 6,1

Author

Listed:
  • Hendrik Van Maldeghem

    (Department of Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000 Gent, Belgium)

Abstract

A Cooperstein ovoid is a set of q 8 + q 4 + 1 pairwise non-collinear points in the Lie incidence geometry E 6 , 1 ( q ) . They were introduced by Cooperstein twenty-six years ago, motivated by the fact that possible non-existence of them would imply non-existence of ovoids in hyperbolic quadrics of rank 5. Since then, no progress has been made on their existence question. We prove that Cooperstein ovoids do not exist under some natural additional conditions. In particular, Cooperstein ovoids intersecting every symplecton of E 6 , 1 ( q ) do not exist, Cooperstein ovoids which are the fixed points of a collineation do not exist, and Cooperstein ovoids which are the absolute points of a polarity of E 6 , 1 ( q ) do not exist.

Suggested Citation

  • Hendrik Van Maldeghem, 2024. "Notes on Cooperstein Ovoids in Finite Geometries of Type 𝖤 6,1," Mathematics, MDPI, vol. 12(23), pages 1-11, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3720-:d:1530652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3720/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3720-:d:1530652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.