IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3679-d1528237.html
   My bibliography  Save this article

Finite-Time Stability Analysis of a Discrete-Time Generalized Reaction–Diffusion System

Author

Listed:
  • Othman Abdullah Almatroud

    (Department of Mathematics, College of Science, University of Hail, Hail 2240, Saudi Arabia)

  • Adel Ouannas

    (Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04112, Algeria)

Abstract

This paper delves into a comprehensive analysis of a generalized impulsive discrete reaction–diffusion system under periodic boundary conditions. It investigates the behavior of reactant concentrations through a model governed by partial differential equations (PDEs) incorporating both diffusion mechanisms and nonlinear interactions. By employing finite difference methods for discretization, this study retains the core dynamics of the continuous model, extending into a discrete framework with impulse moments and time delays. This approach facilitates the exploration of finite-time stability (FTS) and dynamic convergence of the error system, offering robust insights into the conditions necessary for achieving equilibrium states. Numerical simulations are presented, focusing on the Lengyel–Epstein (LE) and Degn–Harrison (DH) models, which, respectively, represent the chlorite–iodide–malonic acid (CIMA) reaction and bacterial respiration in Klebsiella. Stability analysis is conducted using Matlab’s LMI toolbox, confirming FTS at equilibrium under specific conditions. The simulations showcase the capacity of the discrete model to emulate continuous dynamics, providing a validated computational approach to studying reaction-diffusion systems in chemical and biological contexts. This research underscores the utility of impulsive discrete reaction-diffusion models for capturing complex diffusion–reaction interactions and advancing applications in reaction kinetics and biological systems.

Suggested Citation

  • Othman Abdullah Almatroud & Adel Ouannas, 2024. "Finite-Time Stability Analysis of a Discrete-Time Generalized Reaction–Diffusion System," Mathematics, MDPI, vol. 12(23), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3679-:d:1528237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yousif, Majeed A. & Hamasalh, Faraidun K., 2024. "The fractional non-polynomial spline method: Precision and modeling improvements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelouahed Kouibia & Miguel Pasadas & Loubna Omri, 2024. "A Shape-Preserving Variational Spline Approximation Problem for Hole Filling in Generalized Offset Surfaces," Mathematics, MDPI, vol. 12(11), pages 1-11, June.
    2. Cemil Tunç & Fahir Talay Akyildiz, 2024. "Unique Solutions for Caputo Fractional Differential Equations with Several Delays Using Progressive Contractions," Mathematics, MDPI, vol. 12(18), pages 1-15, September.
    3. Xin Song & Rui Wu, 2024. "An Efficient Numerical Method for Solving a Class of Nonlinear Fractional Differential Equations and Error Estimates," Mathematics, MDPI, vol. 12(12), pages 1-12, June.
    4. Ying-Ying Yu & Xin Li & Ye Ji, 2024. "On Intersections of B-Spline Curves," Mathematics, MDPI, vol. 12(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3679-:d:1528237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.