Large Language Model and Digital Twins Empowered Asynchronous Federated Learning for Secure Data Sharing in Intelligent Labeling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xuanzhu Sheng & Yang Zhou & Xiaolong Cui, 2024. "Graph Neural Network Based Asynchronous Federated Learning for Digital Twin-Driven Distributed Multi-Agent Dynamical Systems," Mathematics, MDPI, vol. 12(16), pages 1-24, August.
- Giuseppe Piras & Sofia Agostinelli & Francesco Muzi, 2024. "Digital Twin Framework for Built Environment: A Review of Key Enablers," Energies, MDPI, vol. 17(2), pages 1-27, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-40, December.
- Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
- Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
- Giuseppe Piras & Francesco Muzi & Zahra Ziran, 2024. "Open Tool for Automated Development of Renewable Energy Communities: Artificial Intelligence and Machine Learning Techniques for Methodological Approach," Energies, MDPI, vol. 17(22), pages 1-16, November.
More about this item
Keywords
large language model; digital twins; intelligent labeling; asynchronous federated learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3550-:d:1520206. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.