IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3547-d1520185.html
   My bibliography  Save this article

Advanced Trans-BiGRU-QA Fusion Model for Atmospheric Mercury Prediction

Author

Listed:
  • Dong-Her Shih

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Feng-I. Chung

    (Center for General Education, National Chung Cheng University, Chiayi 621301, Taiwan)

  • Ting-Wei Wu

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Bo-Hao Wang

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Ming-Hung Shih

    (Department of Electrical and Computer Engineering, Iowa State University, 2520 Osborn Drive, Ames, IA 50011, USA)

Abstract

With the deepening of the Industrial Revolution and the rapid development of the chemical industry, the large-scale emissions of corrosive dust and gases from numerous factories have become a significant source of air pollution. Mercury in the atmosphere, identified by the United Nations Environment Programme (UNEP) as one of the globally concerning air pollutants, has been proven to pose a threat to the human environment with potential carcinogenic risks. Therefore, accurately predicting atmospheric mercury concentration is of critical importance. This study proposes a novel advanced model—the Trans-BiGRU-QA hybrid—designed to predict the atmospheric mercury concentration accurately. Methodology includes feature engineering techniques to extract relevant features and applies a sliding window technique for time series data preprocessing. Furthermore, the proposed Trans-BiGRU-QA model is compared to other deep learning models, such as GRU, LSTM, RNN, Transformer, BiGRU, and Trans-BiGRU. This study utilizes air quality data from Vietnam to train and test the models, evaluating their performance in predicting atmospheric mercury concentration. The results show that the Trans-BiGRU-QA model performed exceptionally well in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R 2 ), demonstrating high accuracy and robustness. Compared to other deep learning models, the Trans-BiGRU-QA model exhibited significant advantages, indicating its broad potential for application in environmental pollution prediction.

Suggested Citation

  • Dong-Her Shih & Feng-I. Chung & Ting-Wei Wu & Bo-Hao Wang & Ming-Hung Shih, 2024. "Advanced Trans-BiGRU-QA Fusion Model for Atmospheric Mercury Prediction," Mathematics, MDPI, vol. 12(22), pages 1-34, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3547-:d:1520185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catalano, Mario & Galatioto, Fabio & Bell, Margaret & Namdeo, Anil & Bergantino, Angela S., 2016. "Improving the prediction of air pollution peak episodes generated by urban transport networks," Environmental Science & Policy, Elsevier, vol. 60(C), pages 69-83.
    2. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Bergantino, Angela S. & Intini, Mario & Percoco, Marco, 2021. "New car taxation and its unintended environmental consequences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 36-48.
    3. Hua Lv & Shuzhen Xu & Yujie Liu & Wenjian Luo, 2022. "Evaluation and Comparison of Air Pollution Governance Performance: An Empirical Study Based on Jiangxi Province," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    4. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).
    5. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    6. Wang, Jun & Cao, Junxing, 2024. "Reservoir properties inversion using attention-based parallel hybrid network integrating feature selection and transfer learning," Energy, Elsevier, vol. 304(C).
    7. Joanna A. Kamińska, 2018. "Probabilistic Forecasting of Nitrogen Dioxide Concentrations at an Urban Road Intersection," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    8. Ping Wang & Xuran He & Hongyinping Feng & Guisheng Zhang & Chenglu Rong, 2021. "A Hybrid Model for PM 2.5 Concentration Forecasting Based on Neighbor Structural Information, a Case in North China," Sustainability, MDPI, vol. 13(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3547-:d:1520185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.