IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i21p3365-d1507687.html
   My bibliography  Save this article

Matrix Factorization and Prediction for High-Dimensional Co-Occurrence Count Data via Shared Parameter Alternating Zero Inflated Gamma Model

Author

Listed:
  • Taejoon Kim

    (Department of Statistics and Biostatistics, California State University East Bay, Hayward, CA 94542, USA)

  • Haiyan Wang

    (Department of Statistics, Kansas State University, Manhattan, KS 66506, USA)

Abstract

High-dimensional sparse matrix data frequently arise in various applications. A notable example is the weighted word–word co-occurrence count data, which summarizes the weighted frequency of word pairs appearing within the same context window. This type of data typically contains highly skewed non-negative values with an abundance of zeros. Another example is the co-occurrence of item–item or user–item pairs in e-commerce, which also generates high-dimensional data. The objective is to utilize these data to predict the relevance between items or users. In this paper, we assume that items or users can be represented by unknown dense vectors. The model treats the co-occurrence counts as arising from zero-inflated Gamma random variables and employs cosine similarity between the unknown vectors to summarize item–item relevance. The unknown values are estimated using the shared parameter alternating zero-inflated Gamma regression models (SA-ZIG). Both canonical link and log link models are considered. Two parameter updating schemes are proposed, along with an algorithm to estimate the unknown parameters. Convergence analysis is presented analytically. Numerical studies demonstrate that the SA-ZIG using Fisher scoring without learning rate adjustment may fail to find the maximum likelihood estimate. However, the SA-ZIG with learning rate adjustment performs satisfactorily in our simulation studies.

Suggested Citation

  • Taejoon Kim & Haiyan Wang, 2024. "Matrix Factorization and Prediction for High-Dimensional Co-Occurrence Count Data via Shared Parameter Alternating Zero Inflated Gamma Model," Mathematics, MDPI, vol. 12(21), pages 1-30, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3365-:d:1507687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/21/3365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/21/3365/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3365-:d:1507687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.