IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3148-d1494246.html
   My bibliography  Save this article

Fuzzy Linear Temporal Logic with Quality Constraints

Author

Listed:
  • Xianfeng Yu

    (College of Computer Science, Qinghai Normal University, Xining 810008, China
    School of Mathematics and Computer Application, Shangluo University, Shangluo 726000, China)

  • Yongming Li

    (College of Computer Science, Qinghai Normal University, Xining 810008, China
    School of Mathematics and Statistics, Shanxi Normal University, Xi’an 710062, China)

  • Shengling Geng

    (College of Computer Science, Qinghai Normal University, Xining 810008, China)

Abstract

As an extension of quantitative temporal logic, uncertain temporal logic essentially describes the temporal behavior of uncertain and incomplete systems, thus better solving search and decision-making problems in such systems. Fuzzy linear temporal logic (FLTL) is a focal point in uncertain temporal logic research. However, there are evident shortcomings in the current research outcomes. First, in previous FLTL studies, the practice of obtaining path reachability and formula satisfaction values independently and subsequently selecting the smaller of the two as the satisfaction value metric led to information loss. Furthermore, this simplistic information fusion approach fails to reflect the varying importance of these two types of information to the requirements. Second, computing path reachability and temporal logic formula satisfaction values separately may result in a mismatch between the two pieces of information with respect to the same path segment. Thus, the primary challenge lies in accurately integrating the satisfaction values of temporal logic formulas with the path reachability of the segments that yields these satisfaction values, utilizing various reasonable information synthesis methods, to ensure synchronization between path reachability and formula satisfaction values without incurring information loss. Additionally, it is crucial to reflect the different preference requirements for these two types of information. Moreover, the temporal logic formula characterizes system properties, with its sub-formulas delineating distinct sub-properties. Consequently, considering the varying importance preferences of sub-formulas is also significant. To address these deficiencies, we introduced quality constraint operators into FLTL, resulting in quality-constrained fuzzy linear temporal logic (QFLTL). This incorporation enables the synchronization and comprehensive fusion of path-reachability information and formula satisfaction values within the final semantic metric, thereby resolving the issues related to information synchronization and loss. Furthermore, it can accommodate the differing preference requirements between the two types of information and sub-properties during the information synthesis process. We defined the syntax and semantics of QFLTL and examined its expressive power and properties. Notably, we investigated the decidability of logical decision problems in QFLTL, encompassing validity, satisfiability, and model-checking issues. We proposed corresponding solution algorithms and analyzed their complexities.

Suggested Citation

  • Xianfeng Yu & Yongming Li & Shengling Geng, 2024. "Fuzzy Linear Temporal Logic with Quality Constraints," Mathematics, MDPI, vol. 12(19), pages 1-35, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3148-:d:1494246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3148/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3148-:d:1494246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.