IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p2977-d1485391.html
   My bibliography  Save this article

Effective Route Recommendation Leveraging Differentially Private Location Data

Author

Listed:
  • Jongwook Kim

    (Department of Computer Science, Sangmyung University, Seoul 03016, Republic of Korea)

Abstract

The proliferation of GPS-enabled devices and advances in positioning technologies have greatly facilitated the collection of user location data, making them valuable across various domains. One of the most common and practical uses of these location datasets is to recommend the most probable route between two locations to users. Traditional algorithms for route recommendation rely on true trajectory data collected from users, which raises significant privacy concerns due to the personal information often contained in location data. Therefore, in this paper, we propose a novel framework for computing optimal routes using location data collected through differential privacy (DP)-based privacy-preserving methods. The proposed framework introduces a method for accurately extracting transitional probabilities from perturbed trajectory datasets, addressing the challenge of low data utility caused by DP-based methods. Specifically, to effectively compute transitional probabilities, we present a density-adjusted sampling method that enables the collection of representative data across all areas. In addition, we introduce an effective scheme to approximately estimate transitional probabilities based on sampled datasets. Experimental results on real-world data demonstrate the practical applicability and effectiveness of our framework in computing optimal routes while preserving user privacy.

Suggested Citation

  • Jongwook Kim, 2024. "Effective Route Recommendation Leveraging Differentially Private Location Data," Mathematics, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2977-:d:1485391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/2977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/2977/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2977-:d:1485391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.