IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p2960-d1484274.html
   My bibliography  Save this article

An Efficient Tour Construction Heuristic for Generating the Candidate Set of the Traveling Salesman Problem with Large Sizes

Author

Listed:
  • Boldizsár Tüű-Szabó

    (Department of Information Technology, Szechenyi Istvan University, 9026 Gyor, Hungary)

  • Péter Földesi

    (Department of Logistics, Szechenyi Istvan University, 9026 Gyor, Hungary)

  • László T. Kóczy

    (Department of Information Technology, Szechenyi Istvan University, 9026 Gyor, Hungary)

Abstract

In this paper, we address the challenge of creating candidate sets for large-scale Traveling Salesman Problem (TSP) instances, where choosing a subset of edges is crucial for efficiency. Traditional methods for improving tours, such as local searches and heuristics, depend greatly on the quality of these candidate sets but often struggle in large-scale situations due to insufficient edge coverage or high time complexity. We present a new heuristic based on fuzzy clustering, designed to produce high-quality candidate sets with nearly linear time complexity. Thoroughly tested on benchmark instances, including VLSI and Euclidean types with up to 316,000 nodes, our method consistently outperforms traditional and current leading techniques for large TSPs. Our heuristic’s tours encompass nearly all edges of optimal or best-known solutions, and its candidate sets are significantly smaller than those produced with the POPMUSIC heuristic. This results in faster execution of subsequent improvement methods, such as Helsgaun’s Lin–Kernighan heuristic and evolutionary algorithms. This substantial enhancement in computation time and solution quality establishes our method as a promising approach for effectively solving large-scale TSP instances.

Suggested Citation

  • Boldizsár Tüű-Szabó & Péter Földesi & László T. Kóczy, 2024. "An Efficient Tour Construction Heuristic for Generating the Candidate Set of the Traveling Salesman Problem with Large Sizes," Mathematics, MDPI, vol. 12(19), pages 1-21, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2960-:d:1484274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/2960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/2960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A.N. Balaji & N. Jawahar, 2010. "A Simulated Annealing Algorithm for a two-stage fixed charge distribution problem of a Supply Chain," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 7(2), pages 192-215.
    2. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    3. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    4. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    5. Alvim, Adriana C.F. & Taillard, Éric D., 2009. "POPMUSIC for the point feature label placement problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 396-413, January.
    6. Taillard, Éric D. & Helsgaun, Keld, 2019. "POPMUSIC for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 420-429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    2. Ghosh, Diptesh, 2016. "Exploring Lin Kernighan neighborhoods for the indexing problem," IIMA Working Papers WP2016-02-13, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
    4. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    5. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    6. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    7. Taillard, Éric D. & Helsgaun, Keld, 2019. "POPMUSIC for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 420-429.
    8. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    9. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    10. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    11. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    12. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    13. Farasat, Alireza & Nikolaev, Alexander G., 2016. "Signed social structure optimization for shift assignment in the nurse scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 3-13.
    14. Qiu, Yuzhuo & Zhou, Dan & Du, Yanan & Liu, Jie & Pardalos, Panos M. & Qiao, Jun, 2021. "The two-echelon production routing problem with cross-docking satellites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    15. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    16. Agustín Montero & Juan José Miranda-Bront & Isabel Méndez-Díaz, 2017. "An ILP-based local search procedure for the VRP with pickups and deliveries," Annals of Operations Research, Springer, vol. 259(1), pages 327-350, December.
    17. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    18. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    19. TALARICO, Luca & SÖRENSEN, Kenneth & SPRINGAEL, Johan, 2013. "The k-dissimilar vehicle routing problem," Working Papers 2013029, University of Antwerp, Faculty of Business and Economics.
    20. Mor, A. & Speranza, M.G. & Viegas, J.M., 2020. "Efficient loading and unloading operations via a booking system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:2960-:d:1484274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.