IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2889-d1479195.html
   My bibliography  Save this article

C -Semigroups and Their Induced Order

Author

Listed:
  • Daniel Marín-Aragón

    (Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real, Spain
    Avda. Universidad de Cádiz, n° 10, 11519 Campus Universitario de Puerto Real Dirección Postal, Cádiz, Spain.)

  • Raquel Tapia-Ramos

    (Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real, Spain
    Avda. Universidad de Cádiz, n° 10, 11519 Campus Universitario de Puerto Real Dirección Postal, Cádiz, Spain.)

Abstract

Let C ⊂ N p be an integer polyhedral cone. An affine semigroup S ⊂ C is a C -semigroup if | C ∖ S | < + ∞ . This structure has always been studied using a monomial order. The main issue is that the choice of these orders is arbitrary. In the present work, we choose the order given by the semigroup itself, which is a more natural order. This allows us to generalise some of the definitions and results known from numerical semigroup theory to C -semigroups.

Suggested Citation

  • Daniel Marín-Aragón & Raquel Tapia-Ramos, 2024. "C -Semigroups and Their Induced Order," Mathematics, MDPI, vol. 12(18), pages 1-8, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2889-:d:1479195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2889/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2889-:d:1479195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.