IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2818-d1476062.html
   My bibliography  Save this article

Some Equations in Rings Involving Semiprime Ideals and Multiplicative Generalized Semiderivations

Author

Listed:
  • Ali Yahya Hummdi

    (Department of Mathematics, King Khalid University, Abha 61471, Saudi Arabia
    These authors contributed equally to this work.)

  • Öznur Gölbaşı

    (Faculty of Science, Department of Mathematics, Sivas Cumhuriyet University, Sivas 58070, Turkey)

  • Emine Koç Sögütcü

    (Faculty of Science, Department of Mathematics, Sivas Cumhuriyet University, Sivas 58070, Turkey)

  • Nadeem ur Rehman

    (Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
    These authors contributed equally to this work.)

Abstract

This paper examines the commutativity of the quotient ring F / Y by utilizing specific differential identities in a general ring F that contains a semiprime ideal Y . This study particularly focuses on the role of a multiplicative generalized semiderivation ψ , which is associated with a map θ , in determining the commutative nature of the quotient ring.

Suggested Citation

  • Ali Yahya Hummdi & Öznur Gölbaşı & Emine Koç Sögütcü & Nadeem ur Rehman, 2024. "Some Equations in Rings Involving Semiprime Ideals and Multiplicative Generalized Semiderivations," Mathematics, MDPI, vol. 12(18), pages 1-13, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2818-:d:1476062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamad Nagy Daif & Howard E. Bell, 1992. "Remarks on derivations on semiprime rings," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 15, pages 1-2, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakir Ali & Amal S. Alali & Vaishali Varshney, 2024. "Linear Generalized n -Derivations on C ∗ -Algebras," Mathematics, MDPI, vol. 12(10), pages 1-11, May.
    2. Asma Ali & Inzamam ul Huque, 2020. "Commutativity of a 3-Prime near Ring Satisfying Certain Differential Identities on Jordan Ideals," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    3. Vincenzo De Filippis & Nadeem UR Rehman & Abu Zaid Ansari, 2014. "Generalized Derivations on Power Values of Lie Ideals in Prime and Semiprime Rings," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-8, June.
    4. Emine Koç Sögütcü & Shuliang Huang, 2023. "Note on Lie ideals with symmetric bi-derivations in semiprime rings," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 608-618, June.
    5. Shakir Ali & Turki M. Alsuraiheed & Mohammad Salahuddin Khan & Cihat Abdioglu & Mohammed Ayedh & Naira N. Rafiquee, 2023. "Posner’s Theorem and ∗-Centralizing Derivations on Prime Ideals with Applications," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    6. Muhammad Anwar Chaudhry & Öznur Gölbaşi & Emine Koç, 2015. "Some Results on Generalized -Derivations in -Prime Rings," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-6, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2818-:d:1476062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.