IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2803-d1475453.html
   My bibliography  Save this article

Poissonization Inequalities for Sums of Independent Random Variables in Banach Spaces with Applications to Empirical Processes

Author

Listed:
  • Igor Borisov

    (Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia)

Abstract

Inequalities are obtained which connect the probability tails and moments of functions of the n th partial sums of independent random variables taking values in a separable Banach space and those for the accompanying infinitely divisible laws. Some applications to empirical processes are studied.

Suggested Citation

  • Igor Borisov, 2024. "Poissonization Inequalities for Sums of Independent Random Variables in Banach Spaces with Applications to Empirical Processes," Mathematics, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2803-:d:1475453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I. S. Borisov, 2003. "Moment inequalities connected with accompanying Poisson laws in Abelian groups," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Borisov & Maman Jetpisbaev, 2022. "Poissonization Principle for a Class of Additive Statistics," Mathematics, MDPI, vol. 10(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2803-:d:1475453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.