IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2701-d1467304.html
   My bibliography  Save this article

Decentralized Adaptive Event-Triggered Fault-Tolerant Cooperative Control of Multiple Unmanned Aerial Vehicles and Unmanned Ground Vehicles with Prescribed Performance under Denial-of-Service Attacks

Author

Listed:
  • Shangkun Liu

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

  • Jie Huang

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

Abstract

This paper proposes a decentralized adaptive event-triggered fault-tolerant cooperative control (ET-FTCC) scheme for multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults and external disturbances under denial-of-service (DoS) attacks. The multiple UAVs and UGVs have a larger search radius, which is important in both the civilian and military domains. The different dynamics between UAVs and UGVs result in unbalanced interactions in the communication topologies, which increases the complexity of cooperative control. DoS attacks are conducted in both sensor and control channels. The dynamic models of UAVs and UGVs are introduced firstly, and the unified heterogeneous multiagent system model with actuator faults is established. The composite observer is designed to obtain the information of state and lumped disturbance, which is used to design the controller. In order to save the limited communication network resources, the event-triggered mechanism is introduced. The transformed error is presented by using the prescribed performance function (PPF). Then, the sliding-mode manifold is presented by combining the event-triggered control scheme to achieve the tracking purpose with actuator faults, external disturbances, and DoS attacks. Based on the Lyapunov function approach, the tracking errors are bounded within the prescribed boundary. Finally, the effectiveness of the proposed method is verified by qualitative analysis and quantitative analysis of the simulation results. This study can enhance the security and reliability of heterogeneous multiagent systems, providing technical support for the safe operation of unmanned systems. This paper mainly solves the FTCC problem of second-order nonlinear heterogeneous multiagent systems, and further research is needed for the FTCC problem of higher-order nonlinear heterogeneous multi-agent systems. In addition, the system may encounter multiple cyber attacks. As one of the future research works, we can extend the results of this paper to high-order nonlinear systems under multiple cyber attacks, which contain DoS attacks and deception attacks, and achieve fault-tolerant cooperative control of heterogeneous multiagent systems.

Suggested Citation

  • Shangkun Liu & Jie Huang, 2024. "Decentralized Adaptive Event-Triggered Fault-Tolerant Cooperative Control of Multiple Unmanned Aerial Vehicles and Unmanned Ground Vehicles with Prescribed Performance under Denial-of-Service Attacks," Mathematics, MDPI, vol. 12(17), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2701-:d:1467304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2701/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2701-:d:1467304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.