Author
Listed:
- Giacomo Bergami
(School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE4 5TG, UK)
- Oliver Robert Fox
(School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE4 5TG, UK)
- Graham Morgan
(School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE4 5TG, UK)
Abstract
Graph query languages such as Cypher are widely adopted to match and retrieve data in a graph representation, due to their ability to retrieve and transform information. Even though the most natural way to match and transform information is through rewriting rules, those are scarcely or partially adopted in graph query languages. Their inability to do so has a major impact on the subsequent way the information is structured, as it might then appear more natural to provide major constraints over the data representation to fix the way the information should be represented. On the other hand, recent works are starting to move towards the opposite direction, as the provision of a truly general semistructured model (GSM) allows to both represent all the available data formats (Network-Based, Relational, and Semistructured) as well as support a holistic query language expressing all major queries in such languages. In this paper, we show that the usage of GSM enables the definition of a general rewriting mechanism which can be expressed in current graph query languages only at the cost of adhering the query to the specificity of the underlying data representation. We formalise the proposed query language in terms declarative graph rewriting mechanisms described as a set of production rules L → R while both providing restriction to the characterisation of L , and extending it to support structural graph nesting operations, useful to aggregate similar information around an entry-point of interest. We further achieve our declarative requirements by determining the order in which the data should be rewritten and multiple rules should be applied while ensuring the application of such updates on the GSM database is persisted in subsequent rewriting calls. We discuss how GSM, by fully supporting index-based data representation, allows for a better physical model implementation leveraging the benefits of columnar database storage. Preliminary benchmarks show the scalability of this proposed implementation in comparison with state-of-the-art implementations.
Suggested Citation
Giacomo Bergami & Oliver Robert Fox & Graham Morgan, 2024.
"Matching and Rewriting Rules in Object-Oriented Databases,"
Mathematics, MDPI, vol. 12(17), pages 1-63, August.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:17:p:2677-:d:1466131
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2677-:d:1466131. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.