IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2564-d1459643.html
   My bibliography  Save this article

Towards Discriminability with Distribution Discrepancy Constrains for Multisource Domain Adaptation

Author

Listed:
  • Yuwu Lu

    (School of Software, South China Normal University, Foshan 528225, China)

  • Wanming Huang

    (School of Software, South China Normal University, Foshan 528225, China)

Abstract

Multisource domain adaptation (MDA) is committed to mining and extracting data concerning target tasks from several source domains. Many recent studies have focused on extracting domain-invariant features to eliminate domain distribution differences. However, there are three aspects that require further consideration. (1) Efforts should be made to ensure the maximum correlation in the potential subspace between the source and target domains. (2) While aligning the marginal distribution, the conditional distribution must also be considered. (3) Merely aligning the source distribution and target distribution cannot guarantee sufficient differentiation for classification tasks. To address these problems, we propose a novel approach named towards discriminability with distribution discrepancy constrains for multisource domain adaptation (TD-DDC). Specifically, TD-DDC first mines features of maximal relations learned from all domains while constructing domain data distribution mean distance metrics for interdomain distribution adaptation. Simultaneously, we integrate discriminability into domain alignment, which means increasing the distance among labels that are distinct from one another while reducing the distance among labels that are the same. Our proposed method not only reduces the interdomain distributional differences but also takes into account the preservation of interdomain correlation and inter-category discrimination. Numerous experiments have shown that TD-DDC performs much better than its competitors on three visual benchmark test databases.

Suggested Citation

  • Yuwu Lu & Wanming Huang, 2024. "Towards Discriminability with Distribution Discrepancy Constrains for Multisource Domain Adaptation," Mathematics, MDPI, vol. 12(16), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2564-:d:1459643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2564/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2564-:d:1459643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.