IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2542-d1458284.html
   My bibliography  Save this article

Leveraging a Hybrid Machine Learning Approach for Compressive Strength Estimation of Roller-Compacted Concrete with Recycled Aggregates

Author

Listed:
  • Nhat-Duc Hoang

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

In recent years, the use of recycled aggregate (RA) in roller-compacted concrete (RCC) for pavement construction has been increasingly attractive due to various environmental and economic benefits. Early determination of the compressive strength (CS) is crucial for the construction and maintenance of pavement. This paper presents the idea of combining metaheuristics and an advanced gradient boosting regressor for estimating the compressive strength of roller-compacted concrete containing RA. A dataset, including 270 samples, has been collected from previous experimental works. Recycled aggregates of construction demolition waste, reclaimed asphalt pavement, and industrial slag waste are considered in this dataset. The extreme gradient boosting machine (XGBoost) is employed to generalize a functional mapping between the CS and its influencing factors. A recently proposed gradient-based optimizer (GBO) is used to fine-tune the training phase of XGBoost in a data-driven manner. Experimental results show that the hybrid GBO-XGBoost model achieves outstanding prediction accuracy with a root mean square error of 2.64 and a mean absolute percentage error less than 8%. The proposed method is capable of explaining up to 94% of the variation in the CS. Additionally, an asymmetric loss function is implemented with GBO-XGBoost to mitigate the overestimation of CS values. It was found that the proposed model trained with the asymmetric loss function helped reduce overestimated cases by 17%. Hence, the newly developed GBO-XGBoost can be a robust and reliable approach for predicting the CS of RCC using RA.

Suggested Citation

  • Nhat-Duc Hoang, 2024. "Leveraging a Hybrid Machine Learning Approach for Compressive Strength Estimation of Roller-Compacted Concrete with Recycled Aggregates," Mathematics, MDPI, vol. 12(16), pages 1-29, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2542-:d:1458284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2542/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2542-:d:1458284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.