Author
Listed:
- Petr Bujok
(Department of Informatics and Computers, University of Ostrava, 30. Dubna 22, 70103 Ostrava, Czech Republic)
Abstract
The problem of optimisation methods is the stagnation of population P , which results in a local solution for the task. This problem can be solved by employing an archive for good historical solutions outperformed by the new better offspring. The archive A was introduced with the variant of adaptive differential evolution (DE), and it was successfully applied in many adaptive DE variants including the efficient jSO algorithm. In the original jSO, the historical good individuals replace the random existing positions in A . It causes that outperformed historical solution from P with lower quality to replace the stored solution in A with better quality. In this paper, a new approach to replace individuals in archive A more progressively is proposed. Outperformed individuals from P replace solutions in the worse part of A based on the function value. The portion of A selected for replacement is controlled by the input parameter, and its setting is studied in this experiment. The proposed progressive archive is employed in the original jSO. Moreover, the Eigenvector transformation of the individuals for crossover is applied to increase the efficiency for the rotated optimisation problems. The efficiency of the proposed progressive archive and the Eigen crossover are evaluated using the set of 29 optimisation problems for CEC 2024 and various dimensionality. All the experiments were performed on a standard PC, and the results were compared using the standard statistical methods. The newly proposed algorithm with the progressive archive approach performs substantially better than the original jSO, especially when 20 or 40 % of the worse individuals of A are set for replacement. The Eigen crossover increases the performance of the proposed jSO algorithm with the progressive archive approach. The estimated time complexity illustrates the low computational demands of the proposed archive approach.
Suggested Citation
Petr Bujok, 2024.
"Progressive Archive in Adaptive jSO Algorithm,"
Mathematics, MDPI, vol. 12(16), pages 1-20, August.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:16:p:2534-:d:1457780
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2534-:d:1457780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.