Author
Listed:
- Junjian Feng
(School of Information Science, Guangdong University of Finance and Economics, Guangzhou 510320, China)
- Lianfang Tian
(School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China)
- Xiangxia Li
(School of Information Science, Guangdong University of Finance and Economics, Guangzhou 510320, China)
Abstract
Semi-supervised object detection helps to monitor and manage maritime transportation effectively, saving labeling costs. Currently, many semi-supervised object detection methods use a combination of data augmentation and pseudo-label to improve model performance. However, these methods may get into trouble in complex maritime scenes, including occlusion, scale variations and lighting variations, leading to distribution bias between labeled data and unlabeled data and pseudo-label bias. To address these problems, we propose a semi-supervised object detection method in complex maritime scenes based on adaptive adversarial self-training, which provides a teacher–student detection framework to use a robust pseudo-label with data augmentation. The proposed method contains two modules called adversarial distribution discriminator and label adaptive assigner. The adversarial distribution discriminator is proposed to match the distribution between augmented data generated from different data augmentations, while the label adaptive assigner is proposed to reduce the labeling bias for unlabeled data so that the pseudo-label of unlabeled data contributes to the detection performance effectively. Experimental results show that the proposed method achieves a better mean average precision of 91.4%, with only 5% of the labeled samples compared with other semi-supervised object detection methods, and its detection speed is 11.1 frames per second. Experiments also demonstrate that the proposed method improves the detection performance compared with fully supervised detectors.
Suggested Citation
Junjian Feng & Lianfang Tian & Xiangxia Li, 2024.
"Adaptive Adversarial Self-Training for Semi-Supervised Object Detection in Complex Maritime Scenes,"
Mathematics, MDPI, vol. 12(15), pages 1-17, July.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:15:p:2348-:d:1444083
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2348-:d:1444083. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.