IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2175-d1433282.html
   My bibliography  Save this article

Algebraic Connectivity of Power Graphs of Finite Cyclic Groups

Author

Listed:
  • Bilal Ahmad Rather

    (Department of Mathematical Sciences, College of Science, United Arab Emirate University, Al Ain 15551, United Arab Emirates)

Abstract

The power graph P ( Z n ) of Z n for a finite cyclic group Z n is a simple undirected connected graph such that two distinct nodes x and y in Z n are adjacent in P ( Z n ) if and only if x ≠ y and x i = y or y i = x for some non-negative integer i . In this article, we find the Laplacian eigenvalues of P ( Z n ) and show that P ( Z n ) is Laplacian integral (integer algebraic connectivity) if and only if n is either the product of two distinct primes or a prime power. That answers a conjecture by Panda, Graphs and Combinatorics, (2019).

Suggested Citation

  • Bilal Ahmad Rather, 2024. "Algebraic Connectivity of Power Graphs of Finite Cyclic Groups," Mathematics, MDPI, vol. 12(14), pages 1-12, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2175-:d:1433282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2175/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2175-:d:1433282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.