IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2093-d1428443.html
   My bibliography  Save this article

Existence of Viscosity Solutions for Weakly Coupled Cooperative Parabolic Systems with Fully Nonlinear Principle Part

Author

Listed:
  • Georgi Boyadzhiev

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., 1113 Sofia, Bulgaria
    University of Architecture, Civil Engineering and Geodesy, 1 Hr. Smirnenski Bul., 1046 Sofia, Bulgaria
    These authors contributed equally to this work.)

  • Nikolay Kutev

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., 1113 Sofia, Bulgaria
    These authors contributed equally to this work.)

Abstract

In this paper, the existence of viscosity solutions for weakly coupled, degenerate, and cooperative parabolic systems is studied in a bounded domain. In particular, we consider the viscosity solutions of parabolic systems with fully nonlinear degenerated principal symbol and linear coupling part. The maximum principle theorem is given as well.

Suggested Citation

  • Georgi Boyadzhiev & Nikolay Kutev, 2024. "Existence of Viscosity Solutions for Weakly Coupled Cooperative Parabolic Systems with Fully Nonlinear Principle Part," Mathematics, MDPI, vol. 12(13), pages 1-10, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2093-:d:1428443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2093/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2093-:d:1428443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.