IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p1997-d1424400.html
   My bibliography  Save this article

A Deep Learning Approach for Stochastic Structural Plane Generation Based on Denoising Diffusion Probabilistic Models

Author

Listed:
  • Han Meng

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Xiaoyu Qi

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Gang Mei

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

The stochastic structural plane of a rock mass is the key factor controlling the stability of rock mass. Obtaining the distribution of stochastic structural planes within a rock mass is crucial for analyzing rock mass stability and supporting rock slopes effectively. The conventional Monte Carlo method generates each parameter of stochastic structural planes separately without considering the correlation between the parameters. To address the above problem, this study novelly uses the denoising diffusion probabilistic model (DDPM) to generate stochastic structural planes. DDPM belongs to the deep generative model, which can generate stochastic structural planes without assuming the probability distribution of stochastic structural planes in advance. It takes structural plane parameters as an integral input into the model and can automatically capture the correlations between structural plane parameters during generation. This idea has been used for stochastic structural plane generation of the Oernlia slope in the eastern part of Straumsvatnet Lake, Nordland County, north-central Norway. The accuracy was verified by descriptive statistics (i.e., histogram, box plot, cumulative distribution curve), similarity measures (i.e., mean square error, KL divergence, JS divergence, Wasserstein distance, Euclidean distance), error analysis, and the linear regression plot. Moreover, the linear regression plots between the dip direction and the dip angle verified that DDPM can effectively and automatically capture the correlation between parameters.

Suggested Citation

  • Han Meng & Xiaoyu Qi & Gang Mei, 2024. "A Deep Learning Approach for Stochastic Structural Plane Generation Based on Denoising Diffusion Probabilistic Models," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1997-:d:1424400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/1997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/1997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azeroual, Otmane & Saake, Gunter & Schallehn, Eike, 2018. "Analyzing data quality issues in research information systems via data profiling," International Journal of Information Management, Elsevier, vol. 41(C), pages 50-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otmane Azeroual, 2020. "Data Wrangling in Database Systems: Purging of Dirty Data," Data, MDPI, vol. 5(2), pages 1-9, June.
    2. Otmane Azeroual & Joachim Schöpfel & Dragan Ivanovic, 2020. "Influence of Information Quality via Implemented German RCD Standard in Research Information Systems," Data, MDPI, vol. 5(2), pages 1-10, March.
    3. Otmane Azeroual & Gunter Saake & Mohammad Abuosba & Joachim Schöpfel, 2020. "Data Quality as a Critical Success Factor for User Acceptance of Research Information Systems," Data, MDPI, vol. 5(2), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1997-:d:1424400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.