IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p1959-d1421225.html
   My bibliography  Save this article

Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization

Author

Listed:
  • M. Mamun Miah

    (Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
    Department of Mathematics, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh)

  • Faisal Alsharif

    (Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia)

  • Md. Ashik Iqbal

    (Department of Mathematics and Physics, Khulna Agricultural University, Khulna 9100, Bangladesh)

  • J. R. M. Borhan

    (Department of Mathematics, Jashore University of Science and Technology, Jashore 7408, Bangladesh)

  • Mohammad Kanan

    (Department of Industrial Engineering, College of Engineering, University of Business and Technology, Jeddah 21448, Saudi Arabia
    Department of Mechanical Engineering, College of Engineering, Zarqa University, Zarqa 13110, Jordan)

Abstract

In this research, we discussed the different chaotic phenomena, sensitivity analysis, and bifurcation analysis of the planer dynamical system by considering the Galilean transformation to the Lonngren wave equation (LWE) and the (2 + 1)-dimensional stochastic Nizhnik–Novikov–Veselov System (SNNVS). These two important equations have huge applications in the fields of modern physics, especially in the electric signal in data communication for LWE and the mechanical signal in a tunnel diode for SNNVS. A different chaotic nature with an additional perturbed term was also highlighted. Concerning the theory of the planer dynamical system, the bifurcation analysis incorporating phase portraits of the dynamical systems of the declared equations was performed. Additionally, a sensitivity analysis was used to monitor the sensitivity of the mentioned equations. Also, we extracted new, abundant solitary wave structures with the graphical phenomena of the mentioned nonlinear mathematical models. By conducting an expansion method on the abovementioned equations, we generated three types of soliton structures, which are rational function, trigonometric function, and hyperbolic function. By simulating the 3D, contour, and 2D graphs of these obtained solitons, we scrutinized the behavior of the waves affecting the nonlinear terms. The figures show that the solitary waves obtained from LWE are efficient in analyzing electromagnetic wave signals in the cable lines, and the solitary waves from SNNVS are essential in any stochastic system like a sound wave. Moreover, by taking some values of the parameters, we found some interesting soliton shapes, such as compaction soliton, singular periodic solution, bell-shaped soliton, anti-kink-shaped soliton, one-sided kink-shaped soliton, and some flat kink-shaped solitons, etc. This article will have a great impact on nonlinear science due to the new solitary wave structures with different complex phenomena, sensitivity analysis, and bifurcation analysis.

Suggested Citation

  • M. Mamun Miah & Faisal Alsharif & Md. Ashik Iqbal & J. R. M. Borhan & Mohammad Kanan, 2024. "Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1959-:d:1421225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/1959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/1959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Daba Meshesha Gusu & Wakjira Gudeta & Amar Nath Chatterjee, 2023. "Solving Nonlinear Partial Differential Equations of Special Kinds of 3rd Order Using Balance Method and Its Models," International Journal of Differential Equations, Hindawi, vol. 2023, pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Alraddadi & M. Akher Chowdhury & M. S. Abbas & K. El-Rashidy & J. R. M. Borhan & M. Mamun Miah & Mohammad Kanan, 2024. "Dynamical Behaviors and Abundant New Soliton Solutions of Two Nonlinear PDEs via an Efficient Expansion Method in Industrial Engineering," Mathematics, MDPI, vol. 12(13), pages 1-21, June.
    2. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil & Zidan, Ahmed M., 2024. "Qualitative analysis, exact solutions and symmetry reduction for a generalized (2+1)-dimensional KP–MEW-Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Remus-Daniel Ene & Nicolina Pop, 2023. "Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    4. Rafiq, Muhammad Naveed & Chen, Haibo, 2024. "Dynamics of three-wave solitons and other localized wave solutions to a new generalized (3+1)-dimensional P-type equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1959-:d:1421225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.