IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1836-d1414051.html
   My bibliography  Save this article

Dynamic Responses of U-Shaped Caverns under Transient Stress Waves in Deep Rock Engineering

Author

Listed:
  • Lisha Liang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Xibing Li

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Zhixiang Liu

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Siyu Peng

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Deep caverns are frequently subjected to transient loading, resulting in different failure characteristics in the surrounding rock compared to those in shallow caverns. Previous research has rarely focused on the transient responses of non-circular caverns. To address this gap, a theoretical solution for the dynamic stress concentration factor around a U-shaped cavern under transient stress waves was derived based on elasto-dynamic theory and conformal mapping. The theoretical results were validated through simulations using the discrete element software PFC2D 7.0 (Particle Flow Code in two dimensions). Additionally, the energy evolution and failure pattern of the surrounding rock under coupled static–dynamic loading were investigated. The results indicated that, when the stress wave was horizontally incident, rockburst failure was more likely to be observed in the cavern floor, while dynamic tensile failure was prone to occur in the incident sidewall. Furthermore, when the incident direction of the stress wave aligned with the maximum principal stress, more violent rockburst occurred. Moreover, when the rising time of the stress wave was greater than 6.0 ms, the peak dynamic stress concentration factor converged to a stable value, and the surrounding rock could be considered to be in a quasi-static loading state. These findings provide insight into the failure mechanisms of deep caverns and could guide the design of cavern supporting structures.

Suggested Citation

  • Lisha Liang & Xibing Li & Zhixiang Liu & Siyu Peng, 2024. "Dynamic Responses of U-Shaped Caverns under Transient Stress Waves in Deep Rock Engineering," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1836-:d:1414051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1836/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1836-:d:1414051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.