IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1698-d1405316.html
   My bibliography  Save this article

Improved Dual-Center Particle Swarm Optimization Algorithm

Author

Listed:
  • Zhouxi Qin

    (College of Mathematic and Information, China West Normal University, Nanchong 637009, China)

  • Dazhi Pan

    (College of Mathematic and Information, China West Normal University, Nanchong 637009, China
    Sichuan Colleges and Universities Key Laboratory of Optimization Theory and Applications, Nanchong 637009, China)

Abstract

This paper proposes an improved dual-center particle swarm optimization (IDCPSO) algorithm which can effectively improve some inherent defects of particle swarm optimization algorithms such as being prone to premature convergence and low optimization accuracy. Based on the in-depth analysis of the velocity updating formula, the most innovative feature is the vectorial decomposition of the velocity update formula of each particle to obtain three different flight directions. After combining these three directions, six different flight paths and eight intermediate positions can be obtained. This method allows the particles to search for the optimal solution in a wider space, and the individual extreme values are greatly improved. In addition, in order to improve the global extreme value, it is designed to construct the population virtual center and the optimal individual virtual center by using the optimal position and the current position searched by the particle. Combining the above strategies, an adaptive mutation factor that accumulates the coefficient of mutation according to the number of iterations is added to make the particle escape from the local optimum. By running the 12 typical test functions independently 50 times, the results show an average improvement of 97.9% for the minimum value and 97.7% for the average value. The IDCPSO algorithm in this paper is better than other improved particle swarm optimization algorithms in finding the optimum.

Suggested Citation

  • Zhouxi Qin & Dazhi Pan, 2024. "Improved Dual-Center Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1698-:d:1405316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Wei & Li, Yanjun & Shi, Jianxin & Sun, Baozhi & Wang, Chunhui & Zhu, Baitong, 2023. "Applying an improved particle swarm optimization algorithm to ship energy saving," Energy, Elsevier, vol. 263(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elnaz Ghorbani & Tristan Fluechter & Laura Calvet & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2023. "Optimizing Energy Consumption in Smart Cities’ Mobility: Electric Vehicles, Algorithms, and Collaborative Economy," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Awadh Ba Wazir & Ahmed Althobiti & Abdullah A. Alhussainy & Sultan Alghamdi & Mahendiran Vellingiri & Thangam Palaniswamy & Muhyaddin Rawa, 2024. "A Comparative Study of Load Frequency Regulation for Multi-Area Interconnected Grids Using Integral Controller," Sustainability, MDPI, vol. 16(9), pages 1-50, May.
    3. Karatuğ, Çağlar & Tadros, Mina & Ventura, Manuel & Soares, C. Guedes, 2024. "Decision support system for ship energy efficiency management based on an optimization model," Energy, Elsevier, vol. 292(C).
    4. Xin Peng & Hui Chen & Cong Guan, 2023. "Energy Management Optimization of Fuel Cell Hybrid Ship Based on Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-15, January.
    5. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1698-:d:1405316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.